Affine geometry

Japanese: アフィン幾何学 - あふぃんきかがく
Affine geometry

Affine geometry is a geometry that removes the concepts of length and angles from Euclidean geometry. It is more general than Euclidean geometry, but more specific than projective geometry. For any oblique coordinate system on a plane, the linear equations x'=ax+by+p, y'=cx+dy+q,
ad - bc ≠ 0
The point correspondence (x, y) → (x', y') given by is called an affine transformation. Affine geometry, also known as pseudo-geometry, is the study of the properties of figures that do not change under affine transformation. If x and y satisfy the linear equation lx + my + n = 0, then x' and y' also satisfy the linear equation, so a line is transformed into a line by an affine transformation. In other words, a line is an affine geometric concept, and therefore "three points are on a line" and "three points form a triangle" have meaning in affine geometry. "Two lines are parallel" is also an affine geometric concept, but the properties related to length and angles have no meaning. A circle is transformed into an ellipse by an affine transformation, so affine geometry cannot distinguish between them. Euclidean geometry is a geometry that introduces a special metric (the definition of length) into affine geometry, and adding another metric would result in a different geometry. Conversely, affine geometry can be said to be a geometry that extracts and studies common properties that are unrelated to metrics from many metric geometries. Although we have described the two-dimensional case, the same is true in n-dimensions.

[Tachibana Shunichi]

Diagram of affine transformation
©Shogakukan ">

Diagram of affine transformation


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

ユークリッド幾何学から長さ、角の概念を取り去った幾何学をアフィン幾何学affine geometryという。ユークリッド幾何学より一般的であるが、射影幾何学より特殊な幾何学である。平面上の任意の斜交座標系に関して一次式
  x′=ax+by+p,y′=cx+dy+q,
  ad-bc≠0
によって与えられる点対応(x,y)→(x′,y′)をアフィン変換という。アフィン変換によって変わらない図形の性質を研究する学問がアフィン幾何学で、擬似(ぎじ)幾何学ともいわれる。x、yが一次式lx+my+n=0を満たせば、x′、y′も一次式を満たすので、直線はアフィン変換によって直線に移る。すなわち、直線はアフィン幾何学的概念であり、したがって、「3点が1直線上にある」「3点が三角形をつくる」はアフィン幾何学で意味をもつ。また「2直線が平行である」もアフィン幾何学的概念であるが、長さ、角に関する性質は意味をもたない。円はアフィン変換で楕円(だえん)に移ってしまうので、アフィン幾何学ではこれらを区別できない。ユークリッド幾何学は、アフィン幾何学のなかに一つの特別な計量(長さの定義)を持ち込んだ幾何学であり、別の計量を入れれば別の幾何学ができる。逆にいえば、アフィン幾何学は、多くの計量幾何学から計量に無関係な共通の性質を抜き出して調べる幾何学、ということができる。二次元の場合について述べたがn次元でも同様である。

[立花俊一]

アフィン変換の図
©Shogakukan">

アフィン変換の図


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Abū 'Ubayda

>>:  Afinogenov, Aleksandr Nikolaevich

Uho
Uho
Blog    

Recommend

Jang Hyuk-ju - Choukakuchu

Korean author. His real name was Jang Eun-jung, an...

Ro¨ssler, Karl Friedrich Hermann

Year of death: 1894.12.2 (1894.12.2) Born: Decembe...

The Silence of God Trilogy - kami no chinmoku sanbusaku

...Swedish film director. Bergman is known as a s...

Miào Quán sūn (English spelling)

1844‐1919 A Chinese bibliographer and archivist fr...

Struve, O. (English spelling) StruveO

...Also called Struve. A family that has produced...

Phew - Phew

A deciduous tall tree of the Hamamelidaceae famil...

Kumamoto Plain - Kumamoto Heiya

A plain located almost in the center of Kyushu. I...

Salt Industry Association - Engyo Kumiai

...In some places, such as Bizen Nozakihama and S...

Daniil Romanovich

...But it was also an important river and land tr...

Bakunin - Mihail Aleksandrovich Bakunin

Russian revolutionary. Leader of anarchism and po...

gamodeme

… A group of biological species bred and bred in ...

The Banquet of the Curved Waters

One of the annual events held by the Imperial Cour...

American crayfish (English name: Procambarus clarkii; red swamp crayfish)

A freshwater shrimp native to the Louisiana area o...

Ingram, R.

...This became the basis of the Hollywood film pr...

Augustus de Morgan

1806‐71 British mathematician, also known as De Mo...