(1) Curves On a plane curve f ( x , y )=0, a point ( a , b ) such that fx ( a , b )= fy ( a , b )=0 is called a singular point of the curve. Points where a curve intersects with itself (nodes), points that are isolated from the curve but whose coordinates satisfy the equation of the curve (isolated points), and points where the direction of the curve reverses (cusps; two branches share a tangent) are all singular points on a curve. However, the general term singular point also means a point where generality is lost and singularity appears, so there are other points on the plane that are called singular points in addition to the three mentioned above. For example, a point where a curve touches itself (a self-tangency point), a point where a curve suddenly changes direction (a corner point; unlike a cusp, two tangent lines can be drawn to this point), a point where a curve ends (an end point), and a point where a curve approaches infinitely while rotating (an asymptotic point). Singular points can also be defined for points on curved surfaces. (2) About functions A point where the regularity of a function is broken. In particular, for complex functions, a point where a function is not analytical, that is, a point around which a power series expansion cannot be performed. For f ( z ) = 1/ z , z = 0 is a pole, for f ( z ) = √z , z = 0 is a branch point, and for f ( z ) = logz , z = 0 is a singular point known as a proper singular point. (3) About differential equations A singular point is a point where the solution is no longer unique or where other anomalies occur. Some differential equations have moving singularities, where the individual solutions exhibit peculiarities such as diverging to infinity, even though the equation as a whole is normal. Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information |
(1) 曲線について 平面曲線 f(x,y)=0 の上で,fx(a,b)=fy(a,b)=0 となるような点 (a,b) をこの曲線の特異点という。曲線が自分自身と交わっている点 (結節点) ,曲線から孤立はしているが,その座標が曲線の方程式を満たしている点 (孤立点) ,曲線の方向が逆になる点 (尖点。2つの分枝が1本の接線を共有する) などは曲線上の特異点である。しかし特異点という一般的な言葉のなかには,一般性が失われて,特異性が現れる点という意味があるので,以上の3つ以外にも,平面上で特異点と呼ばれているものがある。たとえば,曲線が自分自身に接する点 (自己接触点) ,曲線が急に方向を変える点 (角点。尖点とは異なって,その点に 2 本の接線が引ける) ,曲線がとぎれる点 (終止点) ,曲線が回りながら限りなくそこへ近づくような点 (漸近点) などである。特異点は,そのほか,曲面上の点についても定義される。 (2) 関数について 関数の正則性が破れる点をいう。特に複素関数について,解析的にならない点,つまりその点のまわりでべき級数展開ができない点である。 f(z)=1/z では z=0 が極,f(z)=√z では z=0 は分岐点,f(z)= log z では z=0 は真性特異点といわれる特異点である。 (3) 微分方程式について 解の一意性が成立しなくなったり,その他の異常が生じる点を特異点という。微分方程式によっては,全体としては異常はないが個々の解が無限大に発散するなどの特異性を示す動く特異点をもつものもある。
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報 |
How to use the bow on a stringed instrument. The v...
A species of red algae in the order Crackletia, fa...
A theory put forward in the late 19th century, mai...
…Diderot, who believed that the genre between com...
A mythical animal. Also called griffin or Gryps (G...
...The family originated in the 11th century with...
A storytelling technique used in Buddhism to prea...
…Later, as a “cross-dressed knight,” he was appoi...
…In 1596 (Keicho 1), he completed the Noh kata-se...
The Great Karakoram stretches from 74°E of the Is...
…Originally from Europe, it was invented to plant...
Auxiliary tools are used to facilitate processing ...
…Even after the settlement at the end of the 5th ...
...The first film to start the boom was Luigi Mag...
The property of a material to hinder electric cur...