Quaternion - quaternion

Japanese: 四元数 - しげんすう(英語表記)quaternion
Quaternion - quaternion

Let H be a linear space over the real number field R with four elements 1, i, j, and k as the basis, with 1 as the identity element for multiplication.
(1) i2 = j2 = k2 = -1
(2)ij=-ji=k, jk=-kj=i, ki=-ik=j
(3) By defining multiplication so that a(xy)=(ax)y=x(ay) (a∈R, x, y∈H), we can make the field non-commutative with respect to multiplication. This H is called a quaternion field, and the elements of H are
(4)x=a1+bi+cj+dk (a, b, c, d∈R) is called a quaternion. In particular, in (4), the quaternion x such that b=c=d=0 is the real number a, and x such that c=d=0 is the complex number a+bi. In this sense, the quaternion field H contains the real number field R and the complex number field C as subfields. In fact, it is known that the only fields that are finite linear spaces over R (where multiplication is not necessarily commutative) are R, C, and H.

For the quaternion x in (4), the quaternion a1-bi-cj-dk is written as and is called the conjugate quaternion of x.

The real number N(x) is written as N(x) and is called the norm of x.

x=0⇔N(x)=0
If x ≠ 0, then the inverse of x is

Quaternions are also called Hamilton's quaternions because they were discovered by the British mathematician Hamilton in 1843. This discovery marked the beginning of number theory.

[Tsuneo Kanno]

[Reference] | Body

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

四つの元1、i、j、kを基底とする実数体R上の線形空間Hを、1を乗法についての単位元とし、
(1)i2=j2=k2=-1
(2)ij=-ji=k, jk=-kj=i, ki=-ik=j
(3)a(xy)=(ax)y=x(ay) (a∈R, x, y∈H)を満たすように乗法を定義することにより、乗法について可換でない体にすることができる。このHを四元数体といい、Hの元
(4)x=a1+bi+cj+dk (a, b, c, d∈R)を四元数という。とくに、(4)でb=c=d=0のような四元数xは実数aであり、c=d=0のようなxは複素数a+biである。この意味で、四元数体Hは実数体Rと複素数体Cを部分体として含んでいる。実際、R上有限次線形空間になっている(かならずしも乗法が可換でない)体はR、C、Hに限ることが知られている。

 (4)の四元数xに対し、四元数a1-bi-cj-dkをと書き、xの共役四元数といい、

なる実数をN(x)と書き、xのノルムという。

  x=0⇔N(x)=0
が成り立ち、x≠0なら、xの逆元は

 四元数はイギリスの数学者ハミルトンによって1843年に発見されたので、ハミルトンの四元数ともいう。この発見が多元数論の出発点になった。

[菅野恒雄]

[参照項目] |

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Sequence control - sequence control

>>:  Test paper - Shikenshi

Recommend

Order-taking industry - Employment industry

This refers to industries such as shipbuilding, co...

Hyperborean

…Although structurally diverse, the most common f...

Taichi - Taiitsu

In ancient Chinese thought, it is also written as...

Osugi Shrine (Mie) - Osugi Shrine

...Amago and rainbow trout are farmed in the Miya...

Penni, GF (English spelling) PenniGF

… [The birth of Mannerism] Regarding the origins ...

Mine - Gallery

A road built underground for mines, civil enginee...

Golden Demon

A full-length novel by Ozaki Koyo. It was seriali...

Grass - Grass

The opposite of tree. Unlike trees, there is a li...

khshathrapavan (English spelling)

…the title of a governor of a province in the Per...

Tosti, Francesco Paolo

Born: April 9, 1846 in Ortona sul Mare Died Decemb...

Revolution and Counter-Revolution

…After returning to Germany, he established his b...

Koshoku City - Food

This old city occupies the Chikuma River basin in ...

Eternal Alliance - Ewiger Bund

On August 1, 1291, representatives of the three or...

Octopus jellyfish - Octopus jellyfish

A marine animal belonging to the phylum Coelenter...

AIBA - AIBA

(France) Association Internationale de Boxe Amateu...