As a branch of earth science, it is a field that uses chemical thinking, techniques, and methods to study various parts of the earth and to elucidate the whole picture of the earth. Compared to geophysics, the main feature of geochemistry is that it deals with "matter" itself as the research subject, and it mainly focuses on chemical analysis, and also studies issues related to chemical reactions and chemical equilibrium within one system and between other systems. [Hiroshi Wakita] Research ScopeA coherent picture of the Earth can only be obtained by integrating knowledge gained from geochemistry, geophysics, geology, and other fields. The most important research topics in geochemistry are those related to the origin and evolution of the Earth. To do this, it is necessary to understand the materials that make up the Earth and the process by which the primordial Earth accumulated and formed. In relation to this, geochemistry also includes fields such as "cosmochemistry" and "planetary chemistry" that have developed from the study of materials in the solar system (meteorites, lunar rocks, cosmic dust, etc.). The Earth can be broadly divided into the atmosphere, hydrosphere, and lithosphere, and further into the biosphere. Geochemical research elucidates the chemical composition and isotopic composition of the materials that make up each part of the Earth, the abundance and distribution of various chemical species, the dynamics of their movement and circulation, the transition of redox states, and interactions within and between systems, and provides a time scale for the evolution of each system. In the atmosphere, the main research topics are the origin and evolution of the atmosphere, the dynamics of atmospheric composition taking into account trace elements and aerosols (also called suspended particles, aerosols, or aerosols), chemical and photochemical reactions, gas-particle conversion processes, and natural and anthropogenic variables and their effects and influences. The interaction between the atmosphere and the hydrosphere, which occupies 75% of the Earth's surface, is related to the "greenhouse effect" or "cooling effect" of the Earth, such as carbon dioxide in the atmosphere, and is a major issue today. The hydrosphere can be divided into land water and ocean. It is important to elucidate the chemical action of land water, which is a source of supply to the oceans, and is also related to the effects of weathering and erosion, landslide disasters, and water resource issues. The ocean is closely linked to research on the lithosphere, as it is related to the origin and evolution, chemical composition of seawater, ocean circulation including the deep sea, circulation of materials in seawater, sedimentary environments, seawater-rock interactions, hydrothermal reactions, submarine hot springs, submarine volcanic activity, and the formation of mineral deposits. In the lithosphere, the main issue is the interaction between the mantle and the crust. There are a wide range of basic researches, such as elucidating the mechanisms of magma generation and evolution, element distribution, and chemical reactions under high temperature and pressure conditions, as well as researches on rocks and minerals. The crust also has a great impact on human social life, such as volcanic eruptions and earthquakes, and research and observations on chemical changes within the crust and groundwater dynamics (movement, circulation, alteration, etc.) have opened up new fields aimed at reducing disasters. Social geochemistry research is also being conducted with the aim of preventing environmental deterioration and pollution, which are urgently needed to be solved as civilization develops. In relation to resource issues, exploration and research on mineral deposits, petroleum, natural gas, geothermal energy, etc. are also part of the field of geochemistry. Famous foreign geochemists include F. W. Clarke of the United States, who attempted to estimate the abundance of elements near the Earth's surface, known as the Clarke number, V. M. Goldschmidt of Norway, who showed that the distribution of elements in rocks is governed by ionic radius and charge, and H. C. Urey of the United States, who developed astrochemistry from the study of meteorites. In Japan, Yuji Shibata began pioneering research. [Hiroshi Wakita] "Introduction to Geochemistry" by Takahisa Hantani, Masami Ikkuni, et al. (1988, Maruzen)" ▽ "Geochemistry" by Ichiro Kaneoka, et al. (1989, Kodansha)" ▽ "Development and Prospects of Geochemistry" edited by Shizuo Fujiwara (1997, Tokai University Press)" ▽ "Geochemistry Lectures" edited by the Geochemical Society of Japan, all 8 volumes (2003-2010, Baifukan)" ▽ "Space and Geochemistry" by Kenji Nozu (2010, Asakura Shoten) [References] | | | | | | | | | | | | |Crust| | | | | | | | | | | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
地球科学の一部門として、化学的な考え方や技術・方法を用いることによって地球の各部分に対する研究を行い、地球の全体像を解明しようとする学問。地球物理学と比べて地球化学の大きな特色は「物質」そのものを研究対象として取り扱うことで、化学分析が主体となり、一つの系内部や別の系との間の化学反応や化学平衡に関する問題などについても研究を行うことである。 [脇田 宏] 研究範囲地球化学や地球物理学、地質学などから得られる知見を総合して初めて整合性のある地球の姿が得られる。地球化学のもっとも重要な研究課題は地球の起源や進化に関する諸問題である。そのために、地球を構成する物質についての知識や、原始地球の集積されていく過程や形成の過程を解明することが必要であり、それと関連して、地球化学は、太陽系の物質(隕石(いんせき)や月の岩石、宇宙塵(じん)など)の研究から発展した「宇宙化学」や「惑星化学」などの分野をも包括する。地球は大気圏、水圏、岩石圏(リソスフェア)に大別することができ、さらに生物圏がある。地球化学的研究によって、地球の各部分を構成する物質の化学組成、同位体組成、さまざまな化学種の存在度や分布状態、それらの移動・循環の動態、酸化還元状態の推移や系内・系間の相互作用が明らかにされ、各系の進化に対する時間的尺度が得られる。 大気圏では、大気の起源と進化、微量成分およびエーロゾル(浮遊微粒子、煙霧質、エアロゾルともいう)を考慮した大気組成の動態、化学・光化学反応、気体―粒子間の変換過程、自然的・人為的変動要因とその効果や影響などがおもな研究課題となる。大気圏と地球表面の75%を占める水圏との相互作用は、大気中の炭酸ガス(二酸化炭素)などのように地球の「温室効果」あるいは「冷却効果」と関連性をもち、今日の大きな問題となっている。水圏は陸水と海洋とに区分できる。陸水については、海洋への供給源として、また、風化・侵食による影響、地すべり災害、あるいは水資源の問題とも関連して化学的作用の解明が重要である。海洋は、起源と進化、海水の化学組成、深海を含めた海洋循環、海水中の物質の循環、堆積(たいせき)環境、海水―岩石相互作用、熱水反応、海底温泉、海底火山活動、鉱床の形成などと関連して、岩石圏の研究とも密接に結び付いてくる。岩石圏ではマントルと地殻との相互作用が主要な問題となる。マグマの生成、進化に関する機構の解明、元素の分配、高温・高圧状態での化学反応など基礎的な研究、岩石・鉱物を対象とした多岐にわたる研究がある。また、地殻は火山の噴火、地震の発生など人間の社会生活にも大きな影響を与える場であり、地殻内部での化学変化、地下水のダイナミックス(移動・循環・変質など)に関する研究や観測から、災害の軽減を目ざした領域も開かれている。文明の発達に伴い解決が急がれている環境の悪化、公害などの防止を目的として社会地球化学的研究も行われている。資源問題に関連して、鉱床、石油、天然ガス、地熱などの探査や研究も地球化学の分野である。 外国の著名な地球化学者としては、クラーク数として知られる地表付近における元素存在度の推定を試みたアメリカのF・W・クラーク、岩石中の元素の分配がイオン半径と電荷に支配されることを示したノルウェーのV・M・ゴルトシュミット、隕石の研究から宇宙化学を発展させたアメリカのH・C・ユーリーなどがいる。日本では柴田雄次(しばたゆうじ)が先導的研究を始めた。 [脇田 宏] 『半谷高久・一国雅巳他著『地球化学入門』(1988・丸善)』▽『兼岡一郎他著『地球化学』(1989・講談社)』▽『藤原鎮男編『地球化学の発展と展望』(1997・東海大学出版会)』▽『日本地球化学会監修『地球化学講座』全8巻(2003~2010・培風館)』▽『野津憲治著『宇宙・地球化学』(2010・朝倉書店)』 [参照項目] | | | | | | | | | | | | | | | | | | | | | | | | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Earth sciences - Chikyu kagaku (English spelling) Earth sciences
>>: Earth - Chikyu (English spelling)
…The cervical canal opens in the center of the va...
...It is similar to the Sumatran tiger (P. t . su...
This is a herbaceous plant in which part of the a...
…Halogenated fatty acid herbicides such as TCA an...
...This species is known locally in tropical wate...
...A masked hero created by American cartoonist J...
Born: August 28, 1897 in Gemünden Died: May 3, 195...
...Using the Explorer series, America not only ob...
Located in Ise City, Mie Prefecture. In the past,...
1899‐1936 American filmmaker. He was one of the mo...
A drug that increases the number of blood cells, ...
…He is considered the greatest Southern poet sinc...
An inlet on the west coast of the southern part of...
...(1) General hospitals, (2) Rehabilitation cent...
A town on the Nile River in Egypt, about 100 km up...