For example, when a proton is collided with an atomic nucleus, the scattering cross section indicates how much of the cross section of the target atomic nucleus seen from the direction of the incident proton actually contributes to scattering of the proton or other actions. In the case of a macroscopic relationship between objects, such as a volleyball target being hit by a pachinko ball, the pachinko ball would collide with the volleyball if it traveled straight toward the cross section of the volleyball. Even in such a classical case, it is easy to imagine that the ease of hitting the target (the actual size of the target) varies depending on one's speed, as when aiming at a target with a bow and arrow from a running horse. Here, we will look at collisions in the microscopic world governed by quantum mechanics, such as atoms, atomic nuclei, and elementary particles. In this case, particles also have the properties of waves, so the collision phenomenon becomes somewhat complicated. The situation also differs depending on the type of force acting between the particles (electromagnetic force, nuclear force, etc.). When the type of both the incident particle and the target particle does not change before and after the collision, it is called scattering. There are two types of scattering: elastic scattering, in which the kinetic energy does not change, and inelastic scattering, in which the particle loses part of its kinetic energy due to internal excitation. The areas contributing to these scatterings are the elastic scattering cross section and the inelastic scattering cross section, respectively, and the sum of the two is called the total scattering cross section. On the other hand, when part of the particle is transferred to the target or broken by the collision, the type of the particle changes before and after, and these are collectively called reactions. The ease of a collision that causes a reaction is expressed by the reaction cross section. In reality, when a particle collides with a certain part of the cross section of the target particle, elastic scattering, inelastic scattering, and reactions all occur with a certain probability. In this case, each cross section is defined to include each probability. When inelastic scattering or reaction occurs, the incident particle no longer emerges as the original particle. Therefore, if we focus only on the incident particle, it can be considered that it was absorbed during the collision. In this sense, the sum of the collision cross sections other than elastic scattering is also called the absorption cross section. The sum of the scattering cross section and the reaction cross section, or the sum of the elastic scattering cross section and the absorption cross section, is called the total cross section. The intensity (flux) I of the incident beam is expressed as the number of particles passing through a unit area perpendicular to the direction of propagation in unit time. In other words, if the density of the particle beam (number per unit volume) is ρ and the velocity of the particle is v , then by definition I = ρ v . Let us now take the target nucleus as the origin and the direction of the beam propagation as the + z axis. As shown in , let us assume that the particle is scattered in the direction of angle θ from the z axis. In reality, it is three-dimensional, so the scattering plane in this figure is determined by determining the rotation angle ∅ around the z axis. In other words, the direction of scattering is expressed by θ and ∅. Thus, the probability σ of particles being scattered per unit time into an infinitesimal solid angle dΩ in the direction of angle (θ, ∅) ( d is the differential symbol indicating that it is infinitesimal) should change depending on the scattering angle (θ, ∅), so it is written in the form of a function σ(θ, ∅) and is called the differential cross section. In other words, it is defined as σ(θ, ∅) d Ω= d σ=(number of particles scattered within an angle of d Ω in unit time)/ I . In , the area of a small cross section (shaded area in the figure) d σ corresponding to a small rotation angle d ∅ in the band-shaped circular ring part of width db between distances (collision parameters) b and b + db from the z-axis is db × b × d ∅, and the number of particles Id σ incident on this part is scattered into a solid angle d Ω=sinθ d θ d ∅, so d σ/ d Ω=( b /sinθ) db / d θ. In other words, σ(θ,∅)= d σ/ d Ω has the same dimensions as the area (length b × length db ). The integral of σ(θ,∅) over the entire solid angle is called the integral cross section or total cross section σ T , and is the effective cross section on the surface of the target perpendicular to the direction of the incident beam. The unit used to measure the collision cross section of atomic nuclei and elementary particles is 1 barn (= 10 -24 cm 2 ).[Koji Bando and Toshio Motoba] [References] | | | | |©Shogakukan "> Scattering cross section (figure) Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
たとえば陽子を原子核に向かって衝突させようとしたとき、入射陽子の方向から見たときの標的原子核の断面積のうち、どれだけが実際上陽子の散乱その他に寄与しているかを表すのが散乱断面積である。標的であるバレーボールにパチンコ玉をぶつけるといった巨視的物体同士の関係ならば、バレーボールの断面内にパチンコ玉が向かって直進すれば衝突することとなろう。このように古典的な場合であっても、走る馬上から弓矢で標的をねらうときのように自分の速さによっても当たりやすさ(実質的な的の大小)が異なることは想像できよう。ここでは原子・原子核・素粒子など量子力学が支配する微視的な世界での衝突をとりあげる。そこでは粒子は同時に波動の性質も備えているので、衝突現象もやや複雑になる。また、粒子間に働く力の種類(電磁気的な力か核力かなど)によっても事情が異なってくる。 衝突の前後で入射粒子も標的粒子もその種類を変えない場合、これを散乱という。散乱には、運動エネルギーが変わらない弾性散乱と、粒子の内部励起によって運動エネルギーの一部を失う非弾性散乱とがある。これらの散乱に寄与する面積がそれぞれ弾性散乱断面積、非弾性散乱断面積であり、両者の和を全散乱断面積という。他方、衝突によって粒子の一部が標的に移ったり壊れたりした場合、それぞれ粒子の種類が前後で変化することになるが、これらを総称して反応という。反応を引き起こす衝突のしやすさを反応断面積で表す。実際には、標的粒子の断面のある部分に衝突したとき、弾性散乱、非弾性散乱、反応がともにある確率でおこる。この場合それぞれの確率までも含めておのおのの断面積は定義されている。 非弾性散乱や反応がおこると、入射粒子はもはや元のままの状態の粒子としては出てこない。したがって、入射粒子にのみ着目すると、衝突の間に吸収されてしまったともみることができる。その意味で、弾性散乱以外の衝突断面積の和を吸収断面積ともいう。散乱断面積と反応断面積の和、あるいは弾性散乱断面積と吸収断面積の和を全断面積という。入射ビームの強度(フラックス)Iは、進行方向に垂直な単位面積を単位時間に通過する粒子の個数で表す。すなわち粒子ビームの密度(単位体積あたりの個数)をρとし、粒子の速度をvとすれば、定義によりI=ρvとなる。いま標的原子核を原点にとり、ビームの進む向きを+z軸にとる。 のように、粒子はz軸からみて角度θの方向に散乱されるとしよう。実際には立体的になっているので、この図の散乱平面は、z軸回りの回転角∅を決めることによって定まる。すなわち散乱の方向はθと∅によって表される。こうして角度(θ,∅)の方向の微小な立体角dΩのなかに(dは微小であることを表す微分記号)、単位時間当りに散乱されてくる確率σは、散乱角(θ,∅)によって変わるはずなので、関数の形でσ(θ,∅)と書き、微分断面積という。すなわち、σ(θ,∅)dΩ=dσ=(単位時間にdΩの角度内に散乱される粒子数)/Iと定義される。 で、z軸より距離(衝突パラメーター)bとb+dbの間の幅dbの帯状の円輪部分のうち、微小回転角d∅に対応する小さな断面(図の斜線をほどこした部分)dσの面積はdb×b×d∅となり、この部分に入射してくる粒子の数Idσが、立体角dΩ=sinθdθd∅のなかに散乱されることになるから、dσ/dΩ=(b/sinθ)db/dθとなる。すなわち、σ(θ,∅)=dσ/dΩは面積と同じ次元(長さb×長さdb)をもつことがわかる。σ(θ,∅)を全立体角について積分したものは積分断面積または全断面積σTとよばれ、標的が入射ビームの方向に垂直な面での有効断面積となっている。原子核や素粒子の衝突断面積を測る単位として、1バーン(=10-24cm2)が使われている。[坂東弘治・元場俊雄] [参照項目] | | | | |©Shogakukan"> 散乱断面積〔図〕 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Scattered wave communication
>>: Scattering - Sanran (English spelling)
…In the Elizabethan era, N. Hilliard and Isaac Ol...
…These were open lectures, with discussions cente...
〘Noun〙 (also "kazakuruma")① A device tha...
Also known as a histogram. A graph with rectangula...
The correct name for this suit is an anti -G suit....
1 Geisha Entertainment Also, prostitute. 2. Heian ...
This is the potential difference that occurs alon...
…the opposite of macrocosmus, referring to the sm...
The name of a Gagaku piece. It is also called &qu...
...Population: 272,000 (1990). Located about 60 k...
A general term for synthetic resins with relative...
…In 1615 (Genwa 1), the Edo Shogunate issued the ...
A double star is two stars that appear very close ...
A Chinese poet from the prosperous Tang Dynasty. ...
From an artistic point of view, what is required ...