Poisson distribution

Japanese: ポアソン分布 - ぽあそんぶんぷ(英語表記)Poisson distribution
Poisson distribution

With λ>0

Then, p k >0, p 0 +p 1 +p 2 +……=1, so {p k } is a probability distribution (discrete type). This probability distribution is called the Poisson distribution and is represented by P(λ). There are many examples that are expressed by the Poisson distribution, such as the number of accidents occurring in a certain period of time, the number of particles emitted from radioactive materials within a certain period of time, and others. The fact that the distribution of the number of occurrences of a rare phenomenon is approximated by the Poisson distribution can be explained as follows. In other words, the probability p k that an event with probability p occurs exactly k times out of n repetitions is p k = n C k p k (1-p) nk (k=0,1,……,n)
However, if p is small, n is large, and λ=np is neither large nor small, then the following approximation for p k is given:

This holds true.

The Poisson distribution P(λ) can be expressed as a line graph as follows. If λ is an integer, p k increases monotonically when k < λ-1, reaches a maximum value when k = λ-1, k = λ, and decreases monotonically when k > λ. If λ is not an integer, p k is k < [λ] = (the integer part of λ)
It increases monotonically with k = [λ], reaches a maximum value when k = [λ], and decreases monotonically when k > [λ]. The mean of the Poisson distribution P(λ) is λ, and the variance is also equal to λ. The generating function is e λ(t-1) , and the characteristic function is exp(λ(e it -1)).

[Shigeru Furuya]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

λ>0として

と置けば、pk>0,p0+p1+p2+……=1であるから、{pk}は確率分布(離散型)である。この確率分布をポアソン分布といい、P(λ)で表す。一定期間における事故の発生件数、放射性物質から一定時間内に放射される粒子の数、その他ポアソン分布で表される多くの例がある。まれにおこる現象の生起回数の分布がポアソン分布で近似されることは、次のように説明される。すなわち、確率pの事象がn回の繰り返しのうちにちょうどk回おこる確率pk
  pk=nCkpk(1-p)n-k (k=0,1,……,n)
で与えられるが、もしpが小さく、nが大きく、λ=npが大きくも小さくもないとすると、前記のpkに対して次の近似式

が成り立つのである。

 ポアソン分布P(λ)を折れ線グラフで表すと次のようになる。λが整数であれば、pkはk<λ-1のとき単調増加で、k=λ-1,k=λのとき最大値をとり、k>λで単調減少である。λが整数でなければpk
  k<[λ]=(λの整数部分)
で単調増加で、k=[λ]で最大値をとり、k>[λ]で単調に減少する。ポアソン分布P(λ)の平均値はλ、分散もλに等しい。母関数はeλ(t-1)であり、特性関数はexp(λ(eit-1))である。

[古屋 茂]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Poitiers (English spelling)

>>:  Poisson's ratio

Recommend

Epacris - Epacris

A shrub of the Epacris family similar to the Erica...

Shell bracelet - Kaikushiro

In the Jomon period, they were made by drilling ho...

Cartas do Japão (English spelling)

…The title of the Japanese translation of the so-...

Jorakugi - Engakugi

...During the reign of the next emperor, Emperor ...

Valadon, Suzanne

Born: September 23, 1865 in Bessines, near Limoges...

Occupational Safety and Health - roudou anzen eisei

An occupational accident is an injury, illness, or...

Gugi

Kenyan novelist and playwright. Son of a Kikuyu fa...

pingo

…(2) Ice wedge: A block of ice that has been driv...

Yoshiaki Ashikaga

The 15th Shogun of the Muromachi Shogunate. Son o...

Muḥammad Qazvini

1877‐1949 Iranian philologist. Born in Tehran, he ...

Hjørring

A city in North Jylland County in northern Denmark...

nomarchēs (English spelling) nomarches

…Governors were appointed by the king, but in rea...

Chrysanthemum coccineum (English spelling) Chrysanthemum coccineum

…【Hoshikawa Kiyochika】. … *Some of the terminolog...

"The Life of Charlemagne"

…Author of the Vita Caroli Magni. Latin name Egin...