For a periodic function f ( x ) with period 2π defined in the interval [0,2π], A basic problem with Fourier series is what conditions must be placed on f ( x ) so that the series S [ f ]( x ) converges and its sum is equal to f ( x ). The difficulty of this problem is that, for example, for the Fourier series S [ f ]( x ) to converge to f ( x ) at each point, it is not enough for f ( x ) to be continuous (there is a counterexample). If we require f ( x ) to be a little smoother and define "a periodic function f ( x ) is piecewise smooth if, in the interval [0,2π], f '( x ) exists and is boundedly continuous except for a finite number of points," then if the function f ( x ) is piecewise smooth in [0,2π], then the Fourier series S [ f ]( x ) of f ( x ) converges to 1/2{ f ( x -0)+ f ( x +0)} at any point x . This conclusion also holds true if f ( x ) is bounded ( f ( x )= f1 ( x ) -f2 ( x ) , where f1 ( x ) and f2 ( x ) are monotonically increasing functions). In this way, the final result in the direction of generalizing the function f ( x ) was obtained by L. Carlson of Sweden in 1966. It shows that f ( x ) is square integrable in [0,2π], i.e. [Haruo Sunouchi] L2 convergence of Fourier series Let L 2 [0,2π] denote the set of square-integrable functions (satisfying (1)) defined in [0,2π]. For f ( x ), g ( x )∈ L 2 [0,2π], we define the inner product and norm as In particular, the sequence of functions { fn ( x )} satisfies ‖fn - f0‖ →0( n →∞ ) for f0 ( x ) . [Haruo Sunouchi] Orthogonal Function SystemIn general, if we define L2 ( a , b ) as the set of square-integrable functions on the interval [ a , b ], and define the inner product and norm (2) as the integral from a to b , then L2 ( a , b ) is a Hilbert space. When { j ( x )} ⊂ L2 ( a , b ) is 〈 i , j 〉=0 ( i ≠ j ), { j ( x )} is said to be an orthogonal function system, and further, when ‖j‖ =1 for all j , it is said to be an orthonormal function system. Given a system of orthonormal functions { j ( x )} in L2 ( a , b ), for f ( x ) ∈L2 ( a , b ) , we create a series cj =〈 f , j 〉. L 2 [0,2π] In L 2 (-1,1), the Legendre polynomials [Haruo Sunouchi] "Fourier Series" by Satoshi Igari (1975, Iwanami Shoten) [Reference] | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
区間[0,2π]で定義された周期2πの周期関数f(x)に対し、 フーリエ級数で基本的な問題は、f(x)にどのような条件を置くと、級数S[f](x)が収束し、その和がf(x)に等しくなるかである。この問題のむずかしさは、たとえばフーリエ級数S[f](x)が各点でf(x)に収束するためには、f(x)が連続というだけでは十分でない(反例がある)。もうすこしf(x)に滑らかさを要求して、「周期関数f(x)が区分的に滑らかであるとは、区間[0,2π]において、有限個の点を除いてf´(x)が存在して有界連続となること」と定義すると、関数f(x)が[0,2π]において区分的に滑らかならば、f(x)のフーリエ級数S[f](x)は任意の点xで1/2{f(x-0)+f(x+0)}に収束する。 この結論は、f(x)が有界変動(f(x)=f1(x)-f2(x)と書けて、f1(x),f2(x)は単調増加関数)としてもそのまま成り立つ。 このように関数f(x)を一般にする方向では、最終的な結果が、1966年にスウェーデンのL・カールソンによって得られた。それはf(x)が[0,2π]で自乗可積分、すなわち [洲之内治男] フーリエ級数のL2収束[0,2π]で定義された自乗可積分((1)を満足する)な関数の全体をL2[0,2π]で表し、f(x),g(x)∈L2[0,2π]に対して内積とノルムを とくに関数列{fn(x)}がf0(x)に対し [洲之内治男] 直交関数系一般に区間[a,b]上の自乗可積分な関数の全体をL2(a,b)とし、内積やノルムを、(2)をaからbまでの積分として定義すると、L2(a,b)はヒルベルト空間になる。{j(x)}⊂L2(a,b)が〈i,j〉=0(i≠j)となるとき、{j(x)}は直交関数系であるといい、さらに、すべてのjに対し、‖j‖=1となっているとき正規直交関数系であるという。 L2(a,b)の正規直交関数系{j(x)}が与えられたとき、f(x)∈L2(a,b)に対し、cj=〈f,j〉としてつくった級数 L2[0,2π]で L2(-1,1)において、ルジャンドルの多項式 [洲之内治男] 『猪狩惺著『フーリエ級数』(1975・岩波書店)』 [参照項目] | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
>>: Adverse Disposition - Furieki Shobun
〘Noun〙 An eight-line verse from the Sūtra of Praty...
A wooden doll turned on a potter's wheel. It ...
[Raw] Tenpuku 4 (939) [Died] 1006 The first milita...
...Gold sensitization is usually used in combinat...
…[Tetsuichi Yahara]. … *Some of the terminology t...
Spanish composer and violinist. Born in Pamplona....
...Marsupial [Yoshiharu Imaizumi]. . … *Some of t...
…Originally it was another name for the Japanese ...
It is the main island of the Admiralty Islands, lo...
This refers to foods that contain more alkaline-f...
A former town in Kitatakaki County facing the Aria...
Around 1575 - 1636 (around Tensho 3 - Kan'ei 1...
A summer-green fern of the Dryopteris family. It ...
… Most of France's modern legal codes were co...
[1] [noun] A word that personifies a spectator. It...