Fourier integral

Japanese: フーリエ積分 - フーリエせきぶん(英語表記)Fourier integral
Fourier integral
For function f ( x ) that is integrable over (-∞, ∞), consider the following function F ( t ). The integral on the right-hand side is called the Fourier integral, and the function F ( t ) on the left-hand side is called the Fourier transform of f ( x ). The transformation from f to F using (1) is also called the Fourier transform. This is equivalent to finding the Fourier coefficients of a function over a finite interval. In response to expanding a function into a Fourier series over a finite interval, consider expressing the function f ( x ) over (-∞, ∞) in the form shown below. If f ( x ) has bounded variation in the vicinity of the point x , then the equation holds when the left-hand side of (2) is replaced with 1/2{ f ( x +0) + f ( x -0)}.

Source: Heibonsha World Encyclopedia, 2nd Edition Information

Japanese:
(-∞,∞)において積分可能な関数f(x)に対して,次の関数F(t)を考える。この右辺の積分をフーリエ積分といい,左辺の関数F(t)をf(x)のフーリエ変換という。また(1)によるfからFへの変換をもフーリエ変換という。これは有限区間における関数のフーリエ係数を求めることに相当する。有限区間で関数をフーリエ級数に展開することに対応して(-∞,∞)上の関数f(x)を,のような形に表すことを考える。f(x)が点xの近傍で有界変動ならば,(2)の左辺を1/2{f(x+0)+f(x-0)}で置き換えた式が成立する。

出典 株式会社平凡社世界大百科事典 第2版について 情報

<<:  Prieto, Joaquín

>>:  Fourier series - Fourier series

Recommend

Sée, Henri Eugène

Born: September 6, 1864, Saint-Briss, near Paris [...

Insurance value - insurable value

Valuation of the insured interest. In non-life in...

Proximity fuze

A fuse that automatically ignites when the anti-ai...

Guthrie, Sir William Tyrone

Born: July 2, 1900, Tunbridge Wells, Kent [died] M...

Pros Philēmona; The Letter to Philemon

The Epistle of Philemon is one of Paul's priso...

Dried blood powder - kanso keppun

…For pigs, the amount of blood is about 2.3 liter...

Fujiwara Takafuji - Fujiwara no Takafuji

Year of death: 12 March 900 (13 April 900) Year of...

Nakamagawa River

This river crosses almost all of Iriomote Island,...

Mari (language) (English)

…Half of these people live in the Mari El Republi...

Perineal protection

...The reason is unknown, but it is said that opp...

Oguni Forestry Area

…However, compared to the plains, agriculture and...

Chest respiration

…Respiration is a type of breathing in which the ...

Magnetizing roasting

The process of roasting ores containing non-magnet...

Ogasawara Noisy Animals - Ogasawara Noisy Animals

It is a type of work that includes Kabuki, Ningyo-...

Interest Subsidy - Rishihokyu

The term "subsidy" refers to the provisi...