Pascal's Principle - The Principle of Pascal

Japanese: パスカルの原理 - ぱすかるのげんり
Pascal's Principle - The Principle of Pascal

The principle that the pressure of each part of a fluid at rest in a sealed container is constant regardless of the surface considered. It was proposed by B. Pascal of France in 1653. Therefore, if the pressure of one part is increased, the pressure will increase in all directions, and the pressure of other parts will increase by the same amount. Consider an arbitrary surface in a fluid. The fluids on both sides of the surface exert forces on each other, and the force per unit area in the direction parallel to the surface is called tangential stress (or shear stress), and the force per unit area in the perpendicular direction is called normal stress. In a fluid at rest, tangential stress does not appear. Therefore, a fluid does not resist changes in shape. Also, in a fluid, normal stress acts as if the two parts are pushing against each other, and this is called pressure. In a perfect fluid, tangential stress is zero regardless of whether it is at rest or in motion, and normal stress = pressure is constant regardless of the surface considered. This also applies to viscous fluids if they are at rest. This is Pascal's principle. Water can freely change shape to fit the shape of the container it is in, but if you try to compress water in a bag, the pressure will resist, and the pressure will be equal no matter which direction you press on it from. For solids, pressure is different depending on the direction, so Pascal's principle does not apply. Pascal's principle can be proven as follows.

Consider a triangular prism with height h in a fluid, as shown in the figure . If we assume that the fluid is stationary, the pressure acting on this triangular prism is balanced. Considering that pressure is a force per unit area, the balance of horizontal forces is expressed as p A ha sinθ= p B hb , and the balance of vertical forces is expressed as p A ha cosθ= p C hc . However, since a sinθ= b , a cosθ= c , p Ap Bp C , and we can see that the pressure is equal regardless of the shape of the surface.

[Ryo Ikeuchi]

[Reference] | Pascal
Pascal's principle (diagram)
©Shogakukan ">

Pascal's principle (diagram)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

密閉した容器の中で静止している流体の各部分の圧力は、考える面の選び方によらず一定であるという原理。1653年フランスのB・パスカルが提唱した。したがって、一部分の圧力を増すと、どの方向にも圧力は上昇するので、他の部分の圧力も同じだけ増すことになる。流体内のある一つの任意の面を考える。面の両側の流体は互いに力を及ぼし合っているが、面に平行な方向の単位面積当りの力を接線応力(または、ずり応力)といい、垂直な方向の単位面積当りの力を法線応力という。静止状態にある流体では、接線応力は現れない。したがって、流体は形の変化には抵抗しない。また、流体では、法線応力は互いに押し合うように働き、これを圧力という。完全流体では、静止状態・運動状態にかかわらず接線応力はゼロであり、法線応力=圧力は考える面の選び方によらず一定である。粘性流体でも、静止状態であればこのことがいえる。これがパスカルの原理である。水はそれを入れる容器の形に従って自由に形を変えるが、袋に入れた水を押し縮めようとすると、その圧力で抵抗し、どの方向から押しても圧力は等しい。固体では、圧力は向きによって違っているのでパスカルの原理は成立しない。パスカルの原理は次のようにして証明できる。

 流体中に高さがhのような三角柱を考える。流体は静止していると仮定すると、この三角柱に働く圧力はつり合っている。圧力は単位面積当りの力であることを考慮すると、水平方向の力のつり合いはpAhasinθ=pBhbで、垂直方向の力のつり合いはpAhacosθ=pChcと表される。ところが、asinθ=b,acosθ=cであるから、pApBpCとなり、圧力は面のとり方によらず等しいことがわかる。

[池内 了]

[参照項目] | パスカル
パスカルの原理〔図〕
©Shogakukan">

パスカルの原理〔図〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Pascal's triangle - Pascal's triangle

>>:  Pascal

Recommend

Choroiditis

… [Uveal Disorders] The uvea is a tissue that is ...

Political propaganda

The use of media and political messages to influen...

SED - Surface-conduction electron-emitter display

A type of thin display. It is a display device th...

Smooth muscle

〘noun〙 A type of muscle. It has no visible striati...

Sforzinda

…His works include the Sforza Castle tower, the O...

Frobisher, M.

…He later became the first president of the Compa...

Neope

...A general term for insects in the Neope genus ...

single-electrode potential

...In other words, if the potential inside the el...

Walking race - Kyoho (English spelling) walking race

A type of athletics event. Athletes walk a certai...

Water gourd (English spelling)

... Water drum is said to have originated from hi...

Button fern

...The sporophylls are rather large and tall, wit...

Weissmuller, Johnny

Born June 2, 1904, near Timisoara, Romania [Died] ...

Tokyo Chorus

A Japanese film released in 1931. Directed by Yasu...

Johan August Strindberg

Swedish playwright and novelist. Born January 22n...

White wagtail - White wagtail (English spelling)

A passerine bird of the Wagtail family. Total leng...