Binomial theorem

Japanese: 二項定理 - にこうていり
Binomial theorem

The formula for the expansion of the algebraic sum of two terms to the nth power ( n is a positive integer) is called the binomial theorem. In formula form,

Each coefficient

are called binomial coefficients, and are sometimes represented by symbols. The value of n C k is the total number of ways to select k items from n different items (the order of selection is not taken into account) (the number of combinations). The binomial theorem is related to combinatorics, and the properties of binomial coefficients were clarified by Pascal. One of the most famous examples is Pascal's triangle, which is the relationship between binomial coefficients , n C k -1 + n C k = n +1 C k (1≦ k ≦n).
The numbers are arranged in a triangular shape.

The expansion formula in which the positive integer exponent n in the binomial theorem is replaced by a general real number α is called the general binomial theorem. In this case, the number of expansion terms becomes infinite. For example,

The right-hand side is called the binomial series of x . The range of possible values ​​of x for this series to have a sum (converge) is -1≦ x ≦1.

In general, when (1 + x ) α is expanded into a binomial series, the convergence domain is -1≦ x ≦1 if α>0, and -1< x ≦1 if -1< α<0. If α=0 or α is a natural number, the series converges for any number of x . General binomial series were studied by Isaac Newton.

[Yoshio Takeuchi]

Pascal's Triangle
©Shogakukan ">

Pascal's Triangle


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

二項の代数和のn乗(nは正整数)の展開公式を二項定理という。式で書けば、

となる。各係数

を二項係数といい、これをまた記号で表すこともある。このnCkの数値はn個の異なるものからk個のものを選び出す仕方(選出の順序は考えない)の総数である(組合せの数)。二項定理は組合せ理論と関係し、二項係数についての性質はパスカルによって明らかにされた。そのなかの有名なものにパスカルの三角形がある。これは二項係数間の関係
  nCk-1+nCk=n+1Ck (1≦k≦n)
を三角形状に数を並べて示したものである。

 二項定理における正整数のべき指数nを一般の実数αで置き換えた展開公式を一般二項定理という。この場合、展開項の個数は無限となる。たとえば、

となる。右辺をxの二項級数という。この級数が和をもつ(収束する)ためのxのとりうる値の範囲(収束域)は-1≦x≦1である。

 一般に(1+x)αを二項級数に展開したとき、その収束域はα>0ならば-1≦x≦1となり、また、-1<α<0ならば-1<x≦1となる。α=0またはαが自然数ならばxはどんな数でも収束する。一般二項級数はI・ニュートンによって研究された。

[竹内芳男]

パスカルの三角形
©Shogakukan">

パスカルの三角形


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Binomial distribution

>>:  Nikko Incident

Recommend

Ambroni

…In 105 BC, they annihilated the Roman army at th...

Lynen, F.

…A compound in which acetic acid is bonded to the...

Birds - English

A general term for animals belonging to the phylu...

Karl‐Birger Blomdahl

1916‐68 Swedish composer. He studied composition a...

Hemerocallis citrina (English spelling) Hemerocalliscitrina

… [Mitsuru Hotta]... *Some of the terminology tha...

Fourth Republic (English spelling)

France's political system (September 1944-Jun...

Bunkodo - Bunkodo

A Joruri composer in the mid-Edo period. His real ...

Braun tube

A cathode ray tube changes an electric signal int...

Eastern Nine Tombs (English: Tonggunǔng)

Located in the vast hills of Inchang-ri, Guri-myeo...

Hypocyrta radicans (English spelling) Hypocyrtaradicans

… [Kenzo Fujiwara]. … *Some of the terminology th...

Jing-ji zhuan-gu (English: Jing-ji zhuan-gu)

A Chinese dictionary of characters. Compiled by Ru...

Prohibition of Villains - Akutokin Atsurei

... From the late Kamakura period onwards, these ...

altimeter setting

...The indicator is the height of the cloud base ...

Kamo no Agata-nushi

...As he grew older, they held a banquet for seve...

Kamokogo Tomb - Kamogokofun

…The first of the four types to appear were stone...