Joint - Goudou

Japanese: 合同 - ごうどう
Joint - Goudou

A term used to describe the relationship between two geometric shapes. It is also sometimes used to describe the relationship between two integers.

[Toshio Shibata]

Congruence of shapes

When two figures are completely overlapped by moving one of them, the two figures are said to be congruent. Here, the movement refers to three types of movement: translation, rotation, and line symmetric movement, and movements that can be made by repeating these. In the case of spatial figures, plane symmetric movement is also included.

The basic plane figure is the triangle, and there are three conditions for two triangles to be congruent: the sides and angles must be congruent, the angles must be congruent, and the sides must be congruent.

(1) Congruence of sides and angles means that the two corresponding sides of two triangles and the angles they contain overlap, and is also called congruence of two included angles.

(2) Sides Angles are congruent when two corresponding angles and the side between them overlap. Since the sum of the interior angles of a triangle is 180 degrees, if any two angles are equal, the remaining angles will also be equal. Therefore, it is also called two angles and one side being congruent.

(3) Sides Congruence of sides means that the three corresponding sides are equal, and is also called trilateral congruence.

Based on these congruence conditions, various properties and theorems of plane figures are derived. When constructing plane geometry axiomatically, of the three congruence conditions, the congruence of sides and angles is one of the axioms, and the remaining two congruence conditions are proven as theorems by using the other axioms. On the other hand, when considering area and volume, one of the foundations of metrology is that "two congruent figures have the same area." The symbol A≡B represents the congruence of two figures A and B.

[Toshio Shibata]

Congruence of integers

When a positive integer m is defined, if the difference between two integers a and b is divisible by m, the two integers are said to be congruent modulo m, and are represented by the symbol a≡b(mod.m). For example, when considering modulo 2, even numbers are congruent and odd numbers are congruent, but even numbers and odd numbers are not congruent. In other words, when all the integers that are congruent modulo 2 are grouped together, all integers are classified into all even numbers and all odd numbers. Also, when considering modulo 3, all integers are classified into three types: all multiples of 3, all integers that have a remainder of 1 when divided by 3, and all integers that have a remainder of 2 when divided by 3. In general, when considering a positive integer modulo m, all integers are classified into m types, as can be seen by considering the types of remainders when divided by m. Congruence of integers is a basic concept in considering the properties of integers. This type of congruence has also been generalized to the congruence of polynomials.

[Toshio Shibata]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

二つの図形の間の関係を表す用語の一つ。また、二つの整数の関係を表すときに用いられることもある。

[柴田敏男]

図形の合同

二つの図形の一方を移動することによって両者がまったく重なり合うとき、二つの図形は合同であるという。ここで、移動とは、平行移動、回転移動、線対称移動の3種の移動と、これらを繰り返してできる移動である。空間図形の場合には面対称移動がこれに加わる。

 平面図形の基本は三角形であるが、二つの三角形が合同となる条件は三つある。辺角辺の合同、角辺角の合同、辺辺辺の合同の三つである。

(1)辺角辺の合同とは、二つの三角形の対応する2辺とその挟む角がそれぞれ重なることで、二辺夾角(きょうかく)の合同ともいわれる。

(2)角辺角の合同は、対応する二つの角とその頂点の間の辺がそれぞれ重なることであり、三角形の内角の和は180度であるから、2角がそれぞれ等しければ残りの角も等しくなり、したがって、二角一辺の合同ともいう。

(3)辺辺辺の合同は、対応する3辺がそれぞれ等しいことで、三辺の合同ともいう。

 これらの合同条件を基礎として平面図形のいろいろな性質、定理が導かれる。平面幾何を公理的に構成するときには、三つの合同条件のうち、辺角辺の合同は公理の一つであり、他の公理も用いることにより残り二つの合同条件は定理として証明される。一方、面積や体積を考えるとき、「合同な二つの図形は等積である」ことが計量の一つの基礎である。二つの図形A、Bが合同であることを記号A≡Bで表す。

[柴田敏男]

整数の合同

一つの正の整数mを定めるとき、二つの整数a、bの差がmで割り切れるならば、この二つの整数はmを法として合同であるといい、記号でa≡b(mod.m)と表す。たとえば、2を法として考えると、偶数どうしは合同であり、奇数どうしも合同であるが、偶数と奇数は合同ではない。すなわち、2を法として互いに合同なものをまとめると、整数全体が偶数全体と奇数全体に分類される。また、3を法として考えると、整数全体は、3の倍数全体、3で割ったとき余りが1の整数全体、3で割ったとき余りが2の整数全体の3種類に分類される。一般に、正の整数mを法として考えるとき、mで割ったときの余りの種類を考えればわかるように、整数全体はm種類に分類される。整数についての合同は、整数の性質を考えるうえでの一つの基本的な概念である。また、この種の合同は多項式どうしの合同にまで一般化されている。

[柴田敏男]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Takatoin Temple

>>:  Auditorium - Koudou

Recommend

Anthony Ashley Cooper, 7th Earl of Shaftesbury

1801‐85 One of the most prominent and active socia...

Esling - Esling

…A medieval feudal state that has survived to the...

Ashikaga Chachamaru - Ashikaga Chachamaru

A military commander in the late Muromachi period...

"Red Flower"

...He left behind only short stories, about 20 of...

Visualization Technology

…ACM SIGGRAPH (association for computing machiner...

Yavorov, Pejo Kracholov

Born: 1877. Chirpan [Died] 1914. Sofia. Bulgarian ...

Eastern diamond-back rattle snake

...The main component of the venom is hemotoxic t...

Cercopithecoidea

…In the broad sense, it refers to the Cercopithec...

Analytical functions

If a complex function f(z) on a region D of the c...

Uganda People's Congress

Abbreviation: UPC. A Ugandan political party found...

Gilbert, T.

...the general name for the 1782 Act, which confi...

Fluid dram

…The size differs between the UK and the US: (1) ...

Interlingua - Interlingua (English spelling)

One of the international auxiliary languages. It ...

AAA - AAA

American Arbitration Association. A private organi...

Eshinni - Eshinni

Year of death: Unknown (Year of death unknown) Yea...