Also called xylosome. A polymeric substance found in large quantities in the xylem of vascular plants, such as the vessels and tracheids. Wood, in particular, contains 20-30% of its dry matter. Its chemical structure consists of a phenylpropane-type carbon skeleton with three carbons attached to a benzene ring, with many of these carbon skeletons bonding to each other in side chains and between benzene rings in a dendritic structure, forming a polymer with a molecular weight of over 50,000. Because it is insoluble in many solvents, lignin is solubilized and removed by treatment with sulfite during pulp production. When differentiated tissues of higher plants are sliced and stained with a solution of phloroglucin (trioxybenzene) hydrochloric acid, red coloration is seen along the cell walls under a microscope. This is a reaction based on the coniferyl aldehyde group of lignin. The cell walls of young plant cells that have just completed cell division are still thin and soft, but gradually a primary cellulose wall is formed and the walls become harder. Lignification occurs at the very beginning of this growth process, and even young cells at the growth point show lignin reactions a few days after division. As lignification progresses, cells lose the ability to divide, aging, and cellular function ceases. However, as lignification progresses, cells bond together, strengthening the xylem tissue and allowing the plant body to be firmly supported by natural elements when exposed to the elements. In the cell walls, lignin binds strongly to polysaccharides such as cellulose, hemicellulose, and pectin, helping to physically strengthen the cell walls. Polysaccharides such as cellulose also become more chemically resistant when covered with lignin. At first, a primary cell wall composed mainly of cellulose is formed on the outside of plant cells, but as the cells mature, lignin is deposited between the micellar structures of cellulose, making the cell wall stronger. This inhibits the exchange of substances, and when lignin spreads throughout the cell wall and reaches a certain amount, the thickening of the cell wall stops. This process is called lignification, and is seen in all higher plant cells. Lignification occurs at a very early stage of growth, but as lignification progresses, the cells age and eventually lose their vitality. There are some differences in the components of lignin depending on the stage of evolution of the plant. The main building block of lignin in coniferous gymnosperms is guaiacylpropane. Fern lignin is also said to be similar to that of conifers. In contrast, the lignin of dicotyledonous plants, represented by broad-leaved trees, is mainly composed of syringylpropane in addition to guaiacylpropane, and therefore has a higher proportion of methoxyl groups (CH 3 O-) than coniferous lignin. Monocotyledonous lignin contains p-hydroxyphenylpropane in addition to guaiacylpropane and syringylpropane. These phenylpropane units form ether bonds between side chains and between benzene rings, and also diphenyl (biphenyl) bonds between benzene rings, forming a highly complicated polymer that forms lignin. Lignin biosynthesis proceeds through the oxidative polymerization of phenylpropanoids, which are precursors produced from phenylalanine via cinnamic acid, by peroxidase in the cell wall. Industrially, lignin is recovered in large quantities from the waste liquor of sulfite pulp and soda pulp in the pulp manufacturing process, and vanillin, which is obtained by alkaline decomposition, is used as an industrial raw material for flavorings and other products. [Seiichi Yoshida and Takao Minamikawa] "The Chemistry of Lignin" by Yoshikazu Yahama and Masaru Kamijo (1946, Nippon Hyoronsha)" ▽ "Forestry Technology History Vol. 5, Forest Products Chemistry and Others" (1975), edited and published by the Japan Forestry Technology Association" ▽ "Secondary Metabolism of Higher Plants" by Seiichi Yoshida and Takao Minamikawa (1978, University of Tokyo Press) ▽ "The Secret of Wood: The Mysterious World of Lignin" by Akira Sakakibara (1983, Diamond Inc.) ▽ "Plant Metabolic Physiology" by Shigeyuki Ishikura (1987, Morikita Publishing) ▽ "The Chemistry of Lignin: Fundamentals and Applications" edited by Junzo Nakano, revised and expanded edition (1990, Uni Publishing)" ▽ "Lignin Chemistry Research Methods" edited by Y. Lynn Stephen and W. Dence Carlton, supervised by Junzo Nakano, translated by Takasuke Iizuka (1994, Uni Publishing)" ▽ "Wood Life Science Series 2: Wood Molecular Biology" edited by Takamasa Higuchi (1994, Bun'eido Publishing) " "Plant Biochemistry and Molecular Biology of Stress: Tropical Tubers and Their Surroundings" edited by Ikuzo Uritani (2001, Academic Press Center) [References] | | | | | | | | | | | | | | | | | | | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
木質素ともいう。維管束植物の道管、仮道管などの木部に多量にみいだされる高分子物質。とくに木材中には乾物量の20~30%に達する量が含まれる。化学構造はベンゼン環に炭素3個がついたフェニルプロパン型の炭素骨格からなり、これが多数互いに側鎖と側鎖、ベンゼン環と側鎖の間で結合した樹枝状構造をもち、分子量5万以上の重合体である。多くの溶媒に不溶のため、パルプ製造の際には亜硫酸処理によってリグニンを可溶化して除去する。 高等植物の分化した組織を薄片にしてフロログルシン(トリオシキベンゼン)塩酸溶液で染色すると、顕微鏡下で細胞壁に沿って赤い呈色が見られる。これはリグニンのコニフェリルアルデヒド基に基づく反応である。細胞分裂を終えたばかりの若い植物細胞は細胞壁もまだ薄く柔らかであるが、しだいにセルロースの一次壁がつくられ固さを増してくる。木化はこのような成長のごく初期からおこり、成長点にある若い細胞でも分裂の数日後にはリグニンの反応が認められるようになる。木化が進むと細胞は分裂の能力を失い、老化して細胞の働きも停止する。しかし、こうして木化が進むことによって細胞どうしが互いに結合し、木部の組織が強固になって、自然の風雨にさらされる植物体をしっかりと保つようになる。細胞壁中ではリグニンはセルロース、ヘミセルロース、ペクチンのような多糖類と強く結合して細胞壁の物理的な強化に役だっている。またセルロースなどの多糖類はリグニンに覆われることで化学的な抵抗力も増す。植物細胞の外側には、初めセルロースを主体とした一次細胞壁が形成されるが、細胞が成熟するにしたがって、セルロースのミセル構造の間にリグニンが沈着し、細胞壁が強固になる。これとともに物質の交換が妨げられ、リグニンが細胞壁全体に広がって一定量に達すると、細胞壁の肥厚が止まる。この過程を木化とよび、あらゆる高等植物細胞でみられる。木化は成長のごく初期からおこるが、木化の進行とともに細胞の老化が進み、最終的には生活力を失う。 植物の進化の程度にしたがい、リグニンの構成成分にいくらかの違いがみられる。裸子植物の針葉樹のリグニンはグワヤシルプロパンがおもな構成単位である。シダ植物のリグニンも針葉樹に似るといわれる。これに対して広葉樹で代表される双子葉植物のリグニンは、グワヤシルプロパンに加えてシリンギルプロパンが主体となり、それゆえメトキシル基CH3O-の割合が針葉樹リグニンよりも高くなる。単子葉植物のリグニンはグワヤシルプロパンとシリンギルプロパンのほかにp-ヒドロキシフェニルプロパンを含んでいる。これらのフェニルプロパン単位が互いに側鎖と側鎖、ベンゼン環と側鎖の間でエーテル結合し、またベンゼン環どうしがジフェニル(ビフェニル)結合して、たいへん入り組んだ重合体となり、リグニンを形成している。 リグニンの生合成は、フェニルアラニンより桂皮(けいひ)酸を経て生成するフェニルプロパノイドが前駆物質となって、これが細胞壁でペルオキシダーゼによって酸化重合して進行する。工業的には、パルプ製造過程における亜硫酸パルプ、ソーダパルプの廃液から大量に回収され、そのアルカリ分解によって得られるバニリンは香料などの工業原料として用いられる。 [吉田精一・南川隆雄] 『八浜義和・上代昌著『リグニンの化学』(1946・日本評論社)』▽『日本林業技術協会編・刊『林業技術史第5巻 林産化学編ほか』(1975)』▽『吉田精一・南川隆雄著『高等植物の二次代謝』(1978・東京大学出版会)』▽『榊原彰著『木材の秘密――リグニンの不思議な世界』(1983・ダイヤモンド社)』▽『石倉成行著『植物代謝生理学』(1987・森北出版)』▽『中野準三編『リグニンの化学――基礎と応用』増補改訂版(1990・ユニ出版)』▽『Y・リン・スティーヴン、W・デンス・カールトン編、中野準三監修、飯塚尭介訳『リグニン化学研究法』(1994・ユニ出版)』▽『樋口隆昌編著『木質生命科学シリーズ2 木質分子生物学』(1994・文永堂出版)』▽『瓜谷郁三編著『ストレスの植物生化学・分子生物学――熱帯性イモ類とその周辺』(2001・学会出版センター)』 [参照項目] | | | | | | | | | | | | | | | | | | | | | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
...The former is in a transitional position betwe...
…Capital city Edinburgh. In Roman times it was ca...
Pope of the Roman Catholic Church (reigned 1878-19...
…Furthermore, when we examine the components of t...
The term refers to a person who takes turns presi...
〘From Ya-1〙 An arrow is attached to the bow, and i...
Military education was imposed as a regular curric...
A quantity that indicates the capacity of a condu...
...This was called "Western Laundry" an...
…The representative genera of tabular corals incl...
In South America, this term refers to a "free...
An internal state that causes an animal to behave ...
A war chronicle between Kaga Province guardian Tog...
… Horace's position is somewhat different. Fr...
In the Nara period, the main storehouses were cal...