Boolean Algebra

Japanese: ブール代数 - ぶーるだいすう
Boolean Algebra

It is an algebraic system introduced by British mathematician G. Boole as a field for logical calculations, and has a wide range of applications, including not only logic and set theory but also computer circuit design. The theory is a two-valued predicate logic, where the set of all logical formulas is F, and for any logical formulas p and q, p=q satisfies p≡q (p and q are equivalent). Consider the three logical operations p∨q (p or q), p∧q (p and q), and ~p (negation of p). In this case, the following formulas hold.

(1) p∨q=q∨p p∧q=q∧p
(2) p∨(q∨r)=(p∨q)∨r
p∧(q∧r)=(p∧q)∧r
(3) (p∨q)∧q=q
(p∧q)∨q=q
(4) (p∨q)∧r
=(p∧r)∨(q∧r)
(p∧q)∨r
=(p∨r)∧(q∨r)
Regardless of the logical expressions p and q,
p∨~p=q∨~q,
p∧~p=q∧~q
So, if p∨~p and p∧~p are expressed as 1 (true) and 0 (false), respectively,
(5) p∨~p=1 p∧~p=0
Let us generalize this. That is, suppose that a set B contains at least two elements 1 and 0, and that for two elements x and y in B, elements of B such as x∨y, x∧y, and x * are defined, and that they satisfy the following conditions, where x * represents the complement of x.

(1) x∨y=y∨x x∧y=y∧x
(2) x∨(y∨r)=(x∨y)∨r
x ∧ (y ∧ r) = (x ∧ y) ∧ r
(3) (x∨y)∧y=y
(x∧y)∨y=y
(4) (x∨y)∧r
=(x∧r)∨(y∧r)
(x∧y)∨r
=(x∨r)∧(y∨r)
(5) x∨x * =1 x∧x * =0
In this case, B is called Boolean algebra, and the binary operations x∨y, x∧y and the unary operation x * are called Boolean operations. From these conditions (1) to (5), we have De Morgan's laws: (x∨y) * =x * ∧y * ,(x∧y) * =x * ∨y *
In addition, if x≦y means x∧y=x (which is equivalent to x∨y=y), then B is an ordered set, and x∨y (x∧y) is the smallest (largest) element that is greater (smaller) than x and y. In the predicate logic above, for logical expressions p and q, p≦q means p→q (if p, then q).

Next, let P(A) be all subsets of set A. The elements x and y of P(A) are both subsets of A. For these x and y, if x ∨ y, x ∧ y, and x * are respectively the union, intersection, and complement of x with respect to A, they become subsets of A and are elements of P(A). If we take A as 1 and the empty set as 0, they are also elements of P(A). These operations also satisfy conditions (1) to (5). Therefore, P(A) is a Boolean algebra with respect to these Boolean operations. In this case, x ≦ y coincides with the inclusion relation xy of the sets.

[Toshio Nishimura]

[Reference] | Symbolic Logic | Boolean

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

イギリスの数学者G・ブールが論理計算の場として導入した代数系で、論理学、集合論への適用だけでなく、コンピュータの回路設計など、その応用範囲は広い。理論は二値の述語論理で、論理式全体の集合をFとし、任意の論理式pとqについて、p=qとはp≡q(pとqは同値)が成り立つこととする。三つの論理演算p∨q(pあるいはq)、p∧q(pかつq)、~p(pの否定)を考える。このとき次の式が成り立つ。

(1) p∨q=q∨p p∧q=q∧p
(2) p∨(q∨r)=(p∨q)∨r
    p∧(q∧r)=(p∧q)∧r
(3) (p∨q)∧q=q
     (p∧q)∨q=q
(4) (p∨q)∧r
    =(p∧r)∨(q∧r)
    (p∧q)∨r
    =(p∨r)∧(q∨r)
論理式pとqのいかんにかかわらず、
   p∨~p=q∨~q,
   p∧~p=q∧~q
である。そこで、p∨~p,p∧~pをそれぞれ1(真)と0(偽)で表すと、
(5) p∨~p=1 p∧~p=0
である。これを一般化する。すなわち、集合Bは少なくとも二つの元1と0を含み、Bの二つの元xとyには、x∨y,x∧y,x*というBの元が定義されていて、次の条件を満たすとする。ここでx*はxの補元を表す。

(1) x∨y=y∨x x∧y=y∧x
(2) x∨(y∨r)=(x∨y)∨r
    x∧(y∧r)=(x∧y)∧r
(3) (x∨y)∧y=y
    (x∧y)∨y=y
(4) (x∨y)∧r
    =(x∧r)∨(y∧r)
    (x∧y)∨r
    =(x∨r)∧(y∨r)
(5) x∨x*=1 x∧x*=0
このときBをブール代数といい、二項演算x∨y,x∧yと一項演算x*をブール演算という。この条件(1)~(5)から、ド・モルガンの法則
  (x∨y)*=x*∧y*,(x∧y)*=x*∨y*
が導かれる。また、x≦yをx∧y=x(これはx∨y=yと同値)のこととすれば、Bは順序集合となり、x∨y(x∧y)は、xとyより大(小)なる最小(最大)の元になる。前の述語論理では、論理式pとqについて、p≦qはp→q(pならばq)のことである。

 次に集合計算について考える。集合Aの部分集合の全体をP(A)とする。P(A)の元x、yはともにAの部分集合である。これらのx、yに対して、x∨y,x∧y,x*をそれぞれ、xとyの和集合、共通集合、Aに対するxの補集合とすれば、それらはそれぞれAの部分集合となり、P(A)の元である。1としてAを、0として空集合をとれば、それらはまたP(A)の元である。そして、これらの演算はまた条件(1)~(5)を満たす。したがって、P(A)はこれらのブール演算に関してブール代数である。この場合、x≦yは、集合の包含関係xyと一致する。

[西村敏男]

[参照項目] | 記号論理学 | ブール

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Furuta Oribe

>>:  Fulda (English spelling)

Recommend

Suminagashi - Suminagashi (English spelling) constable

This butterfly belongs to the order Lepidoptera, ...

Nyukasayama

(Fujimi Town, Suwa District, Nagano Prefecture) A ...

Amis, Kingsley

Born: April 16, 1922, London [Died] October 22, 19...

Subaqueous eruption

When underground magma erupts underwater instead o...

silver hatchet fish

...It is somewhat difficult to breed. (c)Silver H...

Xenius

…He studied in France and, together with Ortega y...

File - dang-an; tang-an

This refers to official documents, mainly from gov...

Program music (English)

A musical piece is an instrumental or ensemble pi...

Copper Belt

This is one of the world's largest copper depo...

Salivary gland chromosome

A giant chromosome found in the resting nucleus of...

Imazu Bay - Imazuwan

…To the west is the Itoshima Peninsula, and to th...

Riel, Louis

Born October 23, 1844 in Saint-Boniface, Manitoba....

Hot spring heat release amount - Onsen Hounetsuryo

…Iceland is a good example of this. [Heat dissipa...

Rock dust spreading method - Ganpunsanpuho

…Coal dust is effective for temporary suppression...

Tosu [city] - Tosu

A city in the eastern part of Saga Prefecture. It ...