Boolean Algebra

Japanese: ブール代数 - ぶーるだいすう
Boolean Algebra

It is an algebraic system introduced by British mathematician G. Boole as a field for logical calculations, and has a wide range of applications, including not only logic and set theory but also computer circuit design. The theory is a two-valued predicate logic, where the set of all logical formulas is F, and for any logical formulas p and q, p=q satisfies p≡q (p and q are equivalent). Consider the three logical operations p∨q (p or q), p∧q (p and q), and ~p (negation of p). In this case, the following formulas hold.

(1) p∨q=q∨p p∧q=q∧p
(2) p∨(q∨r)=(p∨q)∨r
p∧(q∧r)=(p∧q)∧r
(3) (p∨q)∧q=q
(p∧q)∨q=q
(4) (p∨q)∧r
=(p∧r)∨(q∧r)
(p∧q)∨r
=(p∨r)∧(q∨r)
Regardless of the logical expressions p and q,
p∨~p=q∨~q,
p∧~p=q∧~q
So, if p∨~p and p∧~p are expressed as 1 (true) and 0 (false), respectively,
(5) p∨~p=1 p∧~p=0
Let us generalize this. That is, suppose that a set B contains at least two elements 1 and 0, and that for two elements x and y in B, elements of B such as x∨y, x∧y, and x * are defined, and that they satisfy the following conditions, where x * represents the complement of x.

(1) x∨y=y∨x x∧y=y∧x
(2) x∨(y∨r)=(x∨y)∨r
x ∧ (y ∧ r) = (x ∧ y) ∧ r
(3) (x∨y)∧y=y
(x∧y)∨y=y
(4) (x∨y)∧r
=(x∧r)∨(y∧r)
(x∧y)∨r
=(x∨r)∧(y∨r)
(5) x∨x * =1 x∧x * =0
In this case, B is called Boolean algebra, and the binary operations x∨y, x∧y and the unary operation x * are called Boolean operations. From these conditions (1) to (5), we have De Morgan's laws: (x∨y) * =x * ∧y * ,(x∧y) * =x * ∨y *
In addition, if x≦y means x∧y=x (which is equivalent to x∨y=y), then B is an ordered set, and x∨y (x∧y) is the smallest (largest) element that is greater (smaller) than x and y. In the predicate logic above, for logical expressions p and q, p≦q means p→q (if p, then q).

Next, let P(A) be all subsets of set A. The elements x and y of P(A) are both subsets of A. For these x and y, if x ∨ y, x ∧ y, and x * are respectively the union, intersection, and complement of x with respect to A, they become subsets of A and are elements of P(A). If we take A as 1 and the empty set as 0, they are also elements of P(A). These operations also satisfy conditions (1) to (5). Therefore, P(A) is a Boolean algebra with respect to these Boolean operations. In this case, x ≦ y coincides with the inclusion relation xy of the sets.

[Toshio Nishimura]

[Reference] | Symbolic Logic | Boolean

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

イギリスの数学者G・ブールが論理計算の場として導入した代数系で、論理学、集合論への適用だけでなく、コンピュータの回路設計など、その応用範囲は広い。理論は二値の述語論理で、論理式全体の集合をFとし、任意の論理式pとqについて、p=qとはp≡q(pとqは同値)が成り立つこととする。三つの論理演算p∨q(pあるいはq)、p∧q(pかつq)、~p(pの否定)を考える。このとき次の式が成り立つ。

(1) p∨q=q∨p p∧q=q∧p
(2) p∨(q∨r)=(p∨q)∨r
    p∧(q∧r)=(p∧q)∧r
(3) (p∨q)∧q=q
     (p∧q)∨q=q
(4) (p∨q)∧r
    =(p∧r)∨(q∧r)
    (p∧q)∨r
    =(p∨r)∧(q∨r)
論理式pとqのいかんにかかわらず、
   p∨~p=q∨~q,
   p∧~p=q∧~q
である。そこで、p∨~p,p∧~pをそれぞれ1(真)と0(偽)で表すと、
(5) p∨~p=1 p∧~p=0
である。これを一般化する。すなわち、集合Bは少なくとも二つの元1と0を含み、Bの二つの元xとyには、x∨y,x∧y,x*というBの元が定義されていて、次の条件を満たすとする。ここでx*はxの補元を表す。

(1) x∨y=y∨x x∧y=y∧x
(2) x∨(y∨r)=(x∨y)∨r
    x∧(y∧r)=(x∧y)∧r
(3) (x∨y)∧y=y
    (x∧y)∨y=y
(4) (x∨y)∧r
    =(x∧r)∨(y∧r)
    (x∧y)∨r
    =(x∨r)∧(y∨r)
(5) x∨x*=1 x∧x*=0
このときBをブール代数といい、二項演算x∨y,x∧yと一項演算x*をブール演算という。この条件(1)~(5)から、ド・モルガンの法則
  (x∨y)*=x*∧y*,(x∧y)*=x*∨y*
が導かれる。また、x≦yをx∧y=x(これはx∨y=yと同値)のこととすれば、Bは順序集合となり、x∨y(x∧y)は、xとyより大(小)なる最小(最大)の元になる。前の述語論理では、論理式pとqについて、p≦qはp→q(pならばq)のことである。

 次に集合計算について考える。集合Aの部分集合の全体をP(A)とする。P(A)の元x、yはともにAの部分集合である。これらのx、yに対して、x∨y,x∧y,x*をそれぞれ、xとyの和集合、共通集合、Aに対するxの補集合とすれば、それらはそれぞれAの部分集合となり、P(A)の元である。1としてAを、0として空集合をとれば、それらはまたP(A)の元である。そして、これらの演算はまた条件(1)~(5)を満たす。したがって、P(A)はこれらのブール演算に関してブール代数である。この場合、x≦yは、集合の包含関係xyと一致する。

[西村敏男]

[参照項目] | 記号論理学 | ブール

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Furuta Oribe

>>:  Fulda (English spelling)

Recommend

Kinuwaba - Kinuwaba

A general term for insects belonging to the Lepido...

Davidenko, AA (English spelling) DavidenkoAA

...This spread all over the world, and the action...

Ḥamd Allāh Qazwīnī

Around 1281-? An Iranian historian. He was a desce...

Glastonbury

A town in the Mendip region of the northeastern So...

Right to propose a proposal

… [Powers of Parliamentarians] The scope of actio...

Tangent plane of a sphere

…When a line or a plane shares a single point wit...

Mass-luminosity relationship

The relationship between a star's mass and its...

Stage lighting

Stage lighting refers to all lighting effects on ...

Kuta-so

A mountain manor located on the border between Tan...

guard

〘noun〙 (guard)① To guard. To protect or defend. Al...

Bengali - Bengalgo (English spelling) Bengali

It is one of the Aryan languages ​​belonging to t...

Alcock, J.

…The infrared astronomical observation satellite ...

Melilla - Melilla (English spelling)

A Spanish port city on the Mediterranean coast in...

Permanent neutrality

A country that is bound by treaty not to start a ...

Černohorský, BM (English spelling) CernohorskyBM

…A Central European republic that existed from 19...