Thermal analysis

Japanese: 熱分析 - ねつぶんせき(英語表記)thermal analysis
Thermal analysis

A general term for a method of analysis in which the occurrence of physical or chemical changes in a substance is detected by changing the temperature of the substance, and for thermometric titration, in which liquids that undergo thermal changes when mixed are mixed and the thermal behavior of the mixture is analyzed.

[Yoshio Narusawa]

principle

(1) Thermogravimetry (TG): A method for continuously measuring the temperature-mass change curve of a sample using a thermobalance. A thermobalance generally consists of a precision balance, a furnace designed to increase the temperature linearly over time, and a recorder.

(2) Differential thermal analysis (DTA): A method in which a reference substance that does not undergo abnormal thermal changes when heated (such as alumina or quartz; these are called thermally neutral substances) is used as a reference substance, and the temperature difference between the two is measured while heating the reference substance and the sample at a constant rate in an electric furnace.

(3) Differential scanning calorimetry (DSC): This is an improved version of the DTA method. When even the slightest temperature difference occurs in a sample compared to a reference material, a compensation heater is used to immediately cancel out the temperature difference, and the power supplied to the heater at that time is recorded.

[Yoshio Narusawa]

measurement

Here we will describe an example of measuring calcium oxalate monohydrate, CaC 2 O 4・H 2 O, using equipment that can simultaneously perform TG and DTA. The TG curve, which shows temperature on the horizontal axis and weight on the vertical axis, shows the first plateau without any change from room temperature to about 100°C, but from about 150°C it gradually loses one molecule of water of crystallization, and becomes anhydrous salt above 200°C.

CaC 2 O 4・H 2 O―→CaC 2 O 4 +H 2 O↑ (1)
The second plateau corresponds to this anhydrous salt, but at around 500 °C a mass loss occurs, resulting in calcium carbonate, CaCO3 .

CaC 2 O 4 ―→CaCO 3 +CO↑ (2)
Furthermore, when the temperature exceeds 800°C, a significant weight loss occurs again, and finally it becomes calcium oxide (CaO), and exists in this state up to 1000°C.

CaCO 3 ―→CaO+CO 2 ↑ (3)
At the same time, the DTA curve, which shares the same horizontal axis as the TG curve and has heat generation above the vertical axis and heat absorption below it, shows endothermic heat at the first stage corresponding to the weight loss, exothermic heat at the second stage corresponding to the mass loss, and endothermic heat at the third stage corresponding to the mass loss. In other words, the dehydration reaction from monohydrate to anhydrous salt is an endothermic reaction, the reaction from anhydrous calcium oxalate to calcium carbonate is an exothermic reaction, and the reaction from calcium carbonate to calcium oxide is an endothermic reaction. It can be seen that calcium carbonate is more stable than calcium oxide. The standard enthalpy of formation (heat content) Δ H ° f (corresponding to negative heat of formation) of calcium carbonate and calcium oxide is -1206.92 kJmol -1 and -635.09 kJmol -1 , respectively. This value is based on calcium simple substance, 0 kJmol -1 , and indicates that calcium carbonate with a smaller value is more stable. When the value is negative, the larger the absolute value, the more stable it is.

As mentioned above, simultaneous measurement of TG and DTA allows the detailed understanding of the thermal decomposition of a substance. However, technical improvements have been made in terms of the use of minute amounts of sample and constant rate heating, and DSC is gradually replacing DTA. Here is an example where TG and DSC were used together to study the thermal decomposition process of hexaammonium heptamolybdate (ammonium paramolybdate) tetrahydrate (NH 4 ) 6 Mo 7 O 24・4H 2 O.




A dehydration endothermic peak (primary decomposition) is observed at around 125°C, and secondary and tertiary decomposition peaks are observed at around 225°C and 300°C. The decomposition methods given by equations (4) and (5) are possible, and the decomposition process was clarified because the weight loss by TG and the value calculated by equation (5) matched well. In addition, the enthalpy change of dehydration can be calculated from the TG-DSC measurement results.

When heat is applied to a substance from the outside, chemical changes such as thermal decomposition or phenomena such as phase transitions occur, resulting in the absorption or release of heat. When such phenomena occur, when a constant amount of heat is supplied per unit time, the rate at which the temperature of the substance rises changes, and it is also possible to determine whether a phenomenon such as a phase transition is endothermic or exothermic. It is an important tool in alloy research, and is also often used in fields such as the identification and confirmation of organic compounds using techniques such as DTA-GC, which combines differential thermal analysis and gas chromatography, and high-temperature X-ray diffraction-DTA, as well as the identification and confirmation and structural research of organometallic compounds and complexes.

[Yoshio Narusawa]

"New Edition of Thermal Analysis" edited by Kobe Hirotaro and Ozawa Tsuyoshi (1992, Kodansha)""Handbook of Calorimetry and Thermal Analysis" edited by the Japanese Society of Calorimetry (1998, Maruzen)" ▽ "Chemical Handbook: Basics" revised 4th edition edited by the Chemical Society of Japan (1993, Maruzen)""Basic Chemistry Selection 7: Instrumental Analysis" 3rd edition by Tanaka Masayuki and Iida Yoshio (1996, Shokabo)""Latest Thermal Measurement - From Basics to Applications" edited by ULVAC R&D, supervised by Hatta Ichiro (2003, Agne Technology Center)"

[References] | X-ray diffraction | Gas chromatography | Endothermic reaction | Water of crystallization | Alloys | Calcium oxide | Phase transition | Dehydration reaction | Calcium carbonate | Heat | Heat content | Thermobalance | Exothermic reaction | Anhydrous salt | Ammonium molybdate

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

物質の温度を変えてゆくことにより、その物質になんらかの物理的・化学的変化の現れるのを検出して分析を行う方法、および混合することにより熱的変化を生じる液体を混合し、その熱的挙動を分析する温度滴定法の総称。

[成澤芳男]

原理

(1)熱重量測定thermogravimetry(TG) 熱天秤(てんびん)により連続的に温度―試料の質量変化曲線を測定する方法。熱天秤は一般に精密天秤と、時間とともに直線的に温度が上昇するようにつくられた炉および記録計よりなる。

(2)示差熱分析differencial thermal analysis(DTA) 加熱によって異常熱変化をおこさないもの(アルミナ、石英など。これらを熱的中性物質という)を基準物質とし、試料とともに電気炉中で一定速度で加熱しながら、両者間の温度差を測定する方法。

(3)示差走査熱量測定differencial scanning calorimetry(DSC) DTA法を改良したもので、基準物質に比べ試料に温度差が少しでも生じると、補償ヒーターを用いてただちにその温度差を打ち消すようにし、その際ヒーターに供給した電力を記録する方法。

[成澤芳男]

測定

TGとDTAが同時に行える装置を用いたシュウ酸カルシウム1水塩CaC2O4・H2Oの測定例について述べる。横軸に温度、縦軸に重量を示すTG曲線は室温から100℃程度までなんの変化もおこらず第一の平坦(へいたん)部を示すが、150℃程度より徐々に1分子の結晶水を失って、200℃を超えたところで無水塩となる。

  CaC2O4・H2O―→CaC2O4+H2O↑ (1)
 第二の平坦部はこの無水塩に対応するが、500℃付近で質量減少がおこり、炭酸カルシウムCaCO3になる。

  CaC2O4―→CaCO3+CO↑ (2)
 さらに800℃を超えるとまた大幅の減量がおこり、最後に酸化カルシウムCaOとなり、1000℃までその状態で存在する。

  CaCO3―→CaO+CO2↑ (3)
 同時に横軸をTG曲線と共通にし、縦軸上の上を発熱、下を吸熱としたDTA曲線は、第1段目の重量減少に相当するところで吸熱を示し、第2段目の質量減少のところで発熱を示し、第3段目の質量減少のところで吸熱を示す。すなわち1水塩から無水塩になる脱水反応は吸熱反応であり、無水シュウ酸カルシウムから炭酸カルシウムの反応は発熱反応であり、炭酸カルシウムから酸化カルシウムになる反応は吸熱反応であることが示される。炭酸カルシウムのほうが酸化カルシウムより安定であることがわかる。炭酸カルシウムと酸化カルシウムの標準生成エンタルピー(熱含量)ΔH°f(負の生成熱に相当)を比較するとそれぞれ、-1206.92kJmol-1と-635.09kJmol-1である。この値はカルシウム単体を基準0kJmol-1にしており、数値が小さい炭酸カルシウムのほうがより安定であることを示す。負の値のときは絶対値の大きいほうが安定である。

 前記のようにTGとDTAを同時に測定すれば、物質の熱分解のようすがつぶさにわかる。しかし、試料の微量化と定速昇温という点で技術的に改良がなされDSCがDTAにとってかわりつつある。七モリブデン酸六アンモニウム(パラモリブデン酸アンモニウム)4水塩(NH4)6Mo7O24・4H2Oの熱分解過程の研究にTGとDSCが併用された例を示す。




 125℃前後で脱水吸熱ピーク(一次分解)が観測され、225℃および300℃前後に二次分解と三次分解のピークが観測される。(4)式と(5)式の分解方式が考えられるが、TGの減量と(5)式の計算値がよく一致することから、分解過程が明らかになった。またTG‐DSCの測定結果より、脱水のエンタルピー変化量が計算で求められる。

 物質に外部から熱を与えるとき、熱分解などの化学変化や、相転移のような現象がおこる場合には熱の吸収または放出がおこる。このような現象のあるときは、単位時間当り一定の速度で熱量を供給するとき、物質の温度上昇速度に変化がおこり、また相転移のような現象においても吸熱か発熱かの判定ができる。合金の研究においては重要な手段の一つであり、そのほか、示差熱分析とガスクロマトグラフィーを併用したDTA‐GCや、高温X線回折‐DTAなどの技術による有機化合物の同定、確認とか、有機金属化合物や錯体の同定、確認、構造研究といった分野によく利用されるようになった。

[成澤芳男]

『神戸博太郎・小沢丈夫編『新版 熱分析』(1992・講談社)』『日本熱測定学会編『熱量測定・熱分析ハンドブック』(1998・丸善)』『日本化学会編『化学便覧 基礎編』改訂4版(1993・丸善)』『田中誠之・飯田芳男著『基礎化学選書7 機器分析』3訂版(1996・裳華房)』『八田一郎監修、アルバック理工編『最新熱測定――基礎から応用まで』(2003・アグネ技術センター)』

[参照項目] | X線回折 | ガスクロマトグラフィー | 吸熱反応 | 結晶水 | 合金 | 酸化カルシウム | 相転移 | 脱水反応 | 炭酸カルシウム | | 熱含量 | 熱天秤 | 発熱反応 | 無水塩 | モリブデン酸アンモニウム

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Combined heat and power generation - steam supply and power generation

>>:  Thermal decomposition

Recommend

Nonelectrolyte

…However, this classification is not necessarily ...

Shosoin treasures of the sea

Another name for Okinoshima Island (due to its abu...

Aubrey, John

Born March 12, 1626, Percy of Easton, Wiltshire [D...

Kineya Rokuzaemon (10th generation)

...The title of a Nagauta song. Lyrics by Lord Mo...

Golden Ox - Gold Ox

[1] [Noun] ① An imaginary golden cow. Also, a cow ...

Philip [IV] - Philip

Capetian king of France (reigned 1285-1314). Known...

Gowland, W.

...the name of three steep mountain ranges in the...

clavus

...The trimmings on Chanel suits and the bellows ...

Walburga

...On this night, witches hold a sabbath on the B...

Yue Fei

A military commander during the founding of the S...

Ducted propeller

Also called a nozzle propeller. A circular duct is...

Frederick John Kiesler

1890‐1965 Austrian artist. Born in Vienna, he part...

Frankfurter Gelehrten Anzeigen (English spelling)

...In Germany, the magazine Brief, die neueste Li...

Upper ionosphere - upper ionosphere

…The E and F1 layers are formed by a balance betw...

Fujiwara Palace

Fujiwara-kyo was the imperial palace of Japan'...