Breeding - Ikushu

Japanese: 育種 - いくしゅ
Breeding - Ikushu

It refers to the creation, cultivation, and propagation of animals and plants with new characteristics that are useful to humans, by utilizing the genetic characteristics of living organisms. It is sometimes used synonymously with selective breeding, but strictly speaking it has a broader meaning than that. In other words, selective breeding aims to create better-quality varieties of existing cultivated plants and animals, while breeding not only includes selective breeding, but also a series of germplasm management such as the search for, introduction, preservation, and evaluation of germplasm, as well as attempts to develop new cultivated crops, livestock, poultry, sericulture, and fish from wild plants and animals.

In any case, breeding methods are used not only by introduction, selection, and crossbreeding (mating), but also by utilizing polyploidy and mutation, cell engineering, chromosome engineering, DNA recombination (genetic recombination), etc., with the aim of increasing the production volume of useful organisms, increasing the usable portion, distribution and processing ability, wide-area adaptability, resistance to diseases and pests, suitability for management, and improving other important characteristics. In such cases, the breeding techniques applied often differ depending on the type of organism being targeted (higher plants, animals, or microorganisms) and the breeding goals.

[Muneo Iizuka]

Breeding successes and challenges

In the Paleolithic era, humans lived a hunting and gathering lifestyle, making use of what was available in nature. In the Neolithic era, humans learned to raise and cultivate wild plants and animals. Since learning that agriculture and animal husbandry were highly efficient means of production for the survival of humans, humankind has continued to acclimatize wild animals, select highly productive plants and animals, and improve cultivation and breeding techniques, and the results of breeding useful plants and animals have been great.

[Muneo Iizuka]

plant

There are said to be millions of species of living things on earth, but only about 8,000 of them are edible plants, and only about 2,500 are actively used, of which about 150 are used on a large scale, and about 20 are involved in the production of staple foods. The amount of solar energy that reaches the earth in a year is said to be 13.4 x 10 20 kcal for the atmosphere and 6.3 x 10 20 kcal for land, but the energy used by plants for net assimilation is 6 x 10 17 kcal. Plants that can convert solar energy into organic matter through photosynthesis in this way have infinite potential for use. The development of unused plant resources has progressed with the times, and the material productivity and high yield of existing cultivated species have made great progress through improvements in photosynthetic ability, resistance to various environments such as weather, soil, and fertilizer, resistance to diseases and insects, and other improvements. Furthermore, improvements have been made in special components, quality, and labor productivity. Plants are expected to have further uses in the future as materials for food, clothing, and construction, as well as raw materials for medical and energy purposes, and the results of their breeding are anticipated. In addition, breeding for decorative materials, for spiritual and cultural purposes such as color, fragrance, and plant and tree shapes, and for the protection of green spaces on Earth, such as preventing desertification and improving resistance to polluted air, is becoming increasingly important. Meanwhile, systems for preserving genetic resources have been established both domestically and globally, supporting breeding.

[Muneo Iizuka]

Animal Husbandry

The domestication and captivity of many wild animals, and the breeding of these animals in terms of productivity, have achieved great results. Great progress has been made in terms of meat, milk, eggs, animal fiber, medicines, and other uses, as well as for use as work animals, pets, and for experiments. Livestock raised for meat require a large amount of feed, so the amount of calories available to humans per unit area is less than when edible crops are directly cultivated and the harvest is consumed as food. However, the significance of livestock and poultry, which produce high-quality protein from plant calorie sources that cannot be used by humans, is great, and it is hoped that livestock with even higher feeding efficiency will be bred in the future. Furthermore, with the trend toward the depletion of marine biological resources, there have been advances in the breeding and breeding of useful fish, shellfish, and crustaceans, along with the development of marine ranches.

[Muneo Iizuka]

Microorganisms

Humans have been using microorganisms, both consciously and unconsciously, for a very long time. They play a major role in the fermentation of miso, soy sauce, and alcoholic beverages, and are also attracting attention as decomposers of waste products in natural ecosystems, and there are hopes for their active use in this regard and for their use in processing synthetic substances. Microorganisms, which are easy to apply genetic recombinant technology to, will continue to be bred in the future, and it is expected that they will be used in fields such as the food and pharmaceutical industries.

[Muneo Iizuka]

Plant breeding technology

Breeding techniques vary depending on the traits and characteristics of the breeding target. In any case, breeding goals are set and the most rational and efficient method is selected to achieve those goals. In practice, the following breeding methods are often used in combination.

(1) Collection and preservation of genetic resources The more genetic resources that are organized and preserved, the easier it is to use them to advance breeding. Collection should be undertaken for all wild species, semi-cultivated (primitive cultivated) types, and cultivated types in the centers where the diversity of genetic variation of the organism is widespread, and secondary and tertiary centers of variation must also be considered. The storage and utilization of genes is sometimes called a gene bank, as the repository functions like a bank. Storage is not limited to seeds; some purposes can also be achieved with pollen, and in the case of pollen storage, it is called a pollen bank.

(2) Introduction breeding: Introducing, examining, and utilizing superior varieties and materials with specific genes from other countries.

(3) Segregation breeding: Selecting individuals with traits that match the intended use from a rough population and developing a variety.

(4) Hybrid breeding: A breeding method used to develop an individual or line that has specific traits from both parents. The two are crossed and the offspring are selected to have the desired traits and be cultivated. In this case, for crops that can be propagated vegetatively, it is sufficient to obtain one individual, regardless of whether genetic fixation occurs or not, but for crops that are propagated by seed, it is necessary to make them pure until there is no separation through selfing or inbreeding. For this reason, further pedigree breeding, mass breeding, backcrossing, multiple crossing, etc. are applied, and individual and line selection is repeated even after the second generation of hybrids ( F2 ) to create a pure species with the desired traits.

(5) Use of hybrid vigor When genetically pure lines (individuals) are crossed, the first generation hybrid ( F1 ) that results shows vigor. This characteristic is used in breeding. It is used for crops that are self-sterile, dioecious (flowering), or male-sterile, and also for completely artificial crosses when a large number of seeds or expensive seeds can be obtained from a single cross.

(6) Utilization of Mutations Mutations are induced using mutagenic chemicals such as X-rays or gamma rays, and the resulting traits are then selected to produce superior varieties, or the process is used indirectly in breeding.

(7) Use of cell and chromosome engineering These include synthetic varieties between distantly related plants by cell fusion, male sterility that can be expected from nuclear replacement individuals obtained by successive backcrossing, euploidy such as tetraploid, triploid, and haploid, aneuploidy such as trisomic ( 2n +1) in which one chromosome is added to a diploid ( 2n ) and nalizomitic ( 2n -2) in which a pair of homologous chromosomes is lost from a diploid with two or more genomes), and other artificial breeding methods at the cell and chromosome level.

(8) Molecular recombination This is a breeding technique in which DNA fragments containing a specific source of information suited to the breeding purpose are incorporated into the DNA molecules of other organisms to utilize their characteristics. It is increasingly being applied to microorganisms.

(9) Other uses: Other uses include breeding using morphogenetic control techniques, such as artificial sex conversion achieved by applying cytokinin or gibberellin.

[Muneo Iizuka]

Livestock breeding technology

In breeding livestock and poultry, sexual reproduction is carried out by mating male and female individuals, so mating individuals with the same phenotype does not necessarily result in a genetically uniform population. If the desired trait is a qualitative trait that is only influenced by genes, it is possible to obtain a population with the desired identical trait by selecting individuals based on the phenotype records of the individuals and mating them. However, the traits that are used in livestock and poultry are quantitative traits that are complex physiological phenomena, such as milk production, meat production, and egg production, and are almost inconsistent. These traits are generally controlled by genes called polygenes at many loci, and are also traits that vary greatly depending on the rearing environment, so the inheritance patterns are complex and not easy to elucidate. Therefore, a guideline is needed to accurately determine the magnitude of the genetic effect from the magnitude or superiority of the phenotypic value, which is the measured value of the quantitative trait. This guideline is called the heritability, and it is possible to estimate the ratio of genetic effect to environmental effect on the phenotypic value.

Many quantitative traits have low heritability, and in these cases, family selection is carried out to select all families with high average abilities in a blood-related population. For example, sibling selection based on sibling records, or progeny testing is carried out to select parents based on the average abilities of their children, and then these are cross-bred. Furthermore, in order to more easily and effectively achieve the goals of livestock and poultry breeding, research is being conducted to clarify certain blood types and mutations of blood proteins as qualitative traits related to quantitative traits. Attempts are also being made to introduce these discoveries into livestock and poultry breeding techniques.

In livestock species such as dairy cows, where individuals engaged in production (utility species) simultaneously increase their offspring as individuals for breeding (seed stock), all of the breeding groups must be genetically improved. For this reason, performance tests are conducted to accurately grasp production ability, and genetically superior individuals are selected and mated repeatedly. In this case, males whose abilities are not apparent are selected based on the results of progeny tests. On the other hand, in livestock species such as pigs, layer hens, and broilers, where the individuals actually used do not leave offspring and there is a separate breeding group (similar to sericulture), it is very effective to utilize hybrid vigor as practical livestock. For this reason, performance tests are conducted for the seed stock group to promote genetic improvement, as in the case of dairy cows, and inbreeding is repeated to create inbred lines so that hybrid vigor can be expected in the F1 . Furthermore, a special selection method is used to test the compatibility between these lines, and first-generation hybrids between these lines, three-way crosses involving three lines, and four-way crosses involving four lines are widely used as practical livestock.

Livestock breeding technology has made remarkable progress, and the completion of methods for freezing and storing semen and fertilized eggs has made artificial insemination and artificial pregnancy (fertilized egg transfer) practical, dramatically increasing the fertility of individual animals. These technologies have made a significant contribution to livestock breeding through the effective use of genetically superior breeding stock. Furthermore, using biotechnology techniques, cloning technology has been used to obtain individuals with the same genes as their parents, and cloned sheep and cows have appeared.

[Nishida Tomoko]

Aquatic organism breeding technology

For some species, such as goldfish, carp, and trout, production techniques have been established long ago using hybridization and mutation, but for yellowtail (hamachi) and eels, which are produced in large quantities in aquaculture, reproduction techniques have not yet been established and wild species are simply bred. Ayu and red sea bream, which have been cultivated since the 1990s, have not yet been able to move away from wild species cultivation, and artificial complete cultivation based on selected cultivated species is progressing for the aforementioned goldfish and carp, as well as rainbow trout and Asakusa nori. Most of these cultivated species with excellent genetic characteristics were selected by chance, and the types are limited. These cultivated species are the result of selective breeding, and young maturity and early spawning have been promoted for rainbow trout, and individuals that can spawn twice a year have been obtained, while high-yielding varieties with fast growth rates have been developed for Asakusa nori. In carp, hybridization between varieties has produced F1 with hybrid vigor in terms of growth rate and disease resistance, but in the F2 , the dominant traits obtained in the F1 are often lost. In breeding under artificial environments, farmed species are more advantageous industrially than wild species, but when placed in a natural environment, natural hybridization between farmed species and wild species occurs, which can lead to problems such as the appearance of hybrids with regressive traits.

Chromosome research also progressed in the 1980s, and as karyotype became clear, attempts were made to create triploid or tetraploid chromosome sets by subjecting fertilized eggs during development to physical stimuli such as low temperature treatment, thereby enabling them to grow larger in a short period of time and to take advantage of their sterility, and this has been successful in carp and marsh flounder, etc. It is expected that these advances in basic cytogenetic research will lead to further developments in fish breeding technology.

[Yoshiaki Deguchi]

"Breeding and Bioscience" edited by Yuzo Yomohara (1993, Yokendou)""Heredity and Breeding of Animals" by Yoshiyuki Sasaki (1994, Asakura Shoten)""Heredity and Breeding of Plants" by Hiroshi Ikehashi (1996, Yokendou)""New Livestock Breeding Science" by Yutaka Mizuma et al. (1996, Asakura Shoten)""Aquaculture Systems 1: Saltwater Fish" edited by Hidemi Kumai (2005, Kouseisha Kouseisha)""Aquaculture Systems 2: Freshwater Fish" edited by Fumio Takashima and Mamoru Murai (2005, Kouseisha Kouseisha)

[References] | Breeding | Genetics | GMO Foods | Genetic Resources | Genetic Engineering | Cloned Cattle | Cloned Sheep | Hybrids | Aquaculture | Breeding Improvement
Utilizing hybrid vigor (example of pigs)
Breeding utilizing hybrid vigor is widely practiced, and in the case of pigs, the use of four-way hybrids is systematically implemented. In this case, breeding pigs (original breeds) are bred for different improvement goals on the paternal and maternal lines, and are maintained in their purity. The father and mother of the original pigs that produce fattening pigs are first-generation hybrids, so the hybrid vigor effect can be expected in terms of growth and reproduction. The fattening pigs born between these parents also have the vigor effect as four-way hybrids. In this case, both the original breeds and their offspring fattening pigs are practical pigs that are used for one generation only and then slaughtered. ©Shogakukan ">

Utilizing hybrid vigor (example of pigs)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

生物のもつ遺伝的形質を利用して、新たに人間に有用な特性をもつ動植物をつくりだし、育成かつ増殖を図ることをいう。品種改良と同義にも用いられるが、厳密にはそれよりも内容が広い。つまり品種改良が、既存の栽培植物や動物の増殖について、いままでよりも良質のものをつくることを目的としているのに対し、育種では、品種改良はもちろん、生殖質の探索、導入と保存、評価など一連の生殖質管理のほか、野生の動植物のなかから新しい栽培作物や家畜、家禽(かきん)、養蚕、魚類などの開発を試みることまで包含する。

 いずれにしても、有用生物の生産量、利用部分の増大、流通加工性、広域適応性、耐病虫性、管理への適合性、そのほかの重要形質の向上を目的として、導入、選抜、交雑(交配)などによる育種はもちろん、倍数性や突然変異の利用、細胞工学、染色体工学、DNA組換え(遺伝子組換え)などによる育種方法が行われている。この場合、高等動植物あるいは微生物など対象となる生物の種類や、育種目標の違いによって、適用する育種技術が異なることが多い。

[飯塚宗夫]

育種の成果と課題

旧石器時代、人類は自然にあるものを利用する狩猟や採集の生活を行っていた。それが新石器時代に入って野生の動植物の飼育や栽培を覚えた。農耕や牧畜が人類の生存のために効率の高い生産手段であることを知ってから、今日まで野生生物の順化(馴化(じゅんか))、生産性の高い動植物の選択、栽培や飼育技術の向上などが続けられ、有用な動植物を育成してきた育種の成果は大きい。

[飯塚宗夫]

植物

地球上に存在する生物の種類は約数百万種といわれているが、そのうち人間に食用とされる植物は約8000種にすぎず、積極的に利用されるのは約2500種で、そのうち大規模には約150種が扱われ、さらに主食物生産に関与しているものは約20種である。地球へ到達する太陽エネルギーは、1年間に大気圏へは13.4×1020キロカロリーで、陸地へは6.3×1020キロカロリーといわれているが、植物が純同化に用いているエネルギーは6×1017キロカロリーである。このように太陽エネルギーを光合成によって有機物に変えることができる植物は、無限の利用価値を秘めている。未利用植物資源の開発は時代とともに進んでおり、また既成栽培種の物質生産性や多収性なども、光合成能の向上、気象、土壌、肥料など諸環境抵抗性、耐病虫性、そのほかの改良によって大きな進歩を遂げてきた。さらに特殊成分、品質の向上、労働生産性なども改良されている。植物は、今後さらに、食用、衣料用、建築用などの材料として、また医用、エネルギー用などの原料として期待され、育種の成果がまたれる。また、装飾用材として、色調、香り、草姿や樹姿など精神文化面での利用や、地球の砂漠化防止、汚染空気耐性の向上など、地球の緑地保護の面からの育種も、重要な課題として必要性を増している。一方、遺伝資源の保存体制が、世界的にも国内的にも整備され、育種を支えてきている。

[飯塚宗夫]

畜産

多くの野生動物の家畜化および飼育化と、それらの動物を利用しての生産性からみた育種の成果は大きい。肉、乳、卵、動物性繊維、薬品、そのほかの利用面でも、役用、愛玩(あいがん)用、実験用などの面でも大きな進歩を遂げている。食肉用の家畜は飼料摂取量が大きいため、人間が利用できる単位面積当りのカロリー量は、食用作物を直接栽培し、収穫物を食糧として摂取する場合よりも小さい。しかし、人間の利用できない植物カロリー源から良質のタンパク質を生産する家畜や家禽の意義は大きく、今後さらに飼養効率の高い家畜の育種が期待される。また、水産生物資源の枯渇化傾向に伴い、海洋牧場の開発とともに有用な魚類、貝類、甲殻類などの飼育化および品種育成の技術も進歩してきた。

[飯塚宗夫]

微生物

人間の微生物の利用は、意識的にも無意識的にもきわめて古くから行われている。みそ、しょうゆ、酒類などの醸造発酵に果たす役割は大きく、また自然生態系における老廃物の分解者としても注目されており、この面での積極的な利用や合成物質の処理者としての利用も期待される。遺伝子の組換え技術の応用が容易な微生物は、今後さらに育種が進められ、食品工業や医薬品工業などの分野での活用が期待される。

[飯塚宗夫]

植物の育種技術

育種対象の形質や特性によって育種技術も異なる。いずれの場合でも、育種目標を設定し、その目標を達成するために、もっとも合理的で効率の高い方法を選定するが、実際には次にあげる育種の諸方法を適宜組み合わせて行うことが多い。

(1)遺伝資源の収集と保存 整理・保存されている遺伝資源が多いほど、それらを利用して育種が進めやすい。収集はその生物の遺伝的変異の多様性の広がる中心地における野生種、半栽培型(原始栽培型)、栽培型のすべてについて行うのがよく、さらに2次、3次の変異中心地についても考慮が必要である。なお、遺伝子の貯蔵と利用は、その貯蔵所が銀行のような役割をもつことから遺伝子銀行とよぶことがある。また、貯蔵は種子に限らず、花粉でも一部の目的は達せられ、花粉貯蔵の場合は花粉銀行とよばれている。

(2)導入育種 諸外国の優良品種や特定の遺伝子をもった材料を導入し、検討して利用する。

(3)分離育種 雑駁(ざっぱく)な集団の中から利用目的に合致する形質をもつ個体を選び、品種育成する。

(4)交雑育種 両親の特定形質をあわせてもつ個体や、系統を育成しようとするときに行う育種法で、両者を交雑し、子孫のなかから目的形質をあわせもち、栽培性のあるものを選ぶ。この場合、栄養繁殖ができる作物は遺伝的固定の有無を問わず、1個体得られるとそれでよいが、種子繁殖をする作物では自殖や近親交配によって分離がなくなるまで純粋にする必要がある。そのため、さらに系統育種法、集団育種法、戻し交雑法、多交雑法などを適用し、雑種第二代(F2)以後も個体選抜と系統選抜とを繰り返し、目的形質をもった純粋種をつくりだす。

(5)雑種強勢の利用 遺伝的に純粋な系統(個体)間交雑を行うと、それからできる雑種第一代(F1)は強勢を示す。この特性を応用した育種を行う。自家不結実性や雌雄異株(花)性のある作物や雄性不稔(ふねん)性のある作物、また完全な人為交雑でも一つの交雑から多数の種子や高価な種子が得られる場合に利用される。

(6)突然変異の利用 X線やγ(ガンマ)線などの変異誘起性化学物質によって突然変異を誘起し、その形質を目的によって選抜して優良な品種をつくる、またそれを間接的に利用する育種である。

(7)細胞・染色体工学の利用 細胞融合による遠縁な植物間の合成種や、連続戻し交雑によって得られる核置換え個体に期待できる雄性不稔性、四倍体、三倍体、半数体などの正倍数性、二倍体(2n)に1本の染色体が加わった(2n+1)トリゾーミックや、二つ以上のゲノムをもつ二倍体から1対の相同染色体が失われた(2n-2)ナリゾーミックなどの異数性、そのほかの細胞および染色体レベルの人為手法による育種である。

(8)分子レベル組換え利用 育種目的にあった特定の情報源をもつDNA断片を、ほかの生物のDNA分子に組み込み、その形質を利用する育種で、微生物での応用が進んでいる。

(9)そのほかの利用 サイトカイニンやジベレリンなどを与えることによって得られる人為的性変換など形態形成の制御技術の利用による育種などもある。

[飯塚宗夫]

家畜の育種技術

家畜や家禽などの育種は、雌雄両個体のかけ合わせ(交配)による有性繁殖が行われるため、同じ表現型の個体どうしを交配しても、ただちに遺伝的に均一な集団が得られるとは限らない。目的とする形質が遺伝子の作用のみを受けている質的形質であれば、個体の表現型の記録をもとに個体選抜をして交配することにより、目的とする同一形質の集団を得ることが可能であるが、家畜や家禽の利用対象となる形質は、泌乳量、産肉量、産卵数などが複雑な生理現象の量的形質であるため、ほとんど一定しない。これらの形質は、一般に多数の座位にあるポリジーンとよばれる遺伝子によって支配され、さらに飼育環境によっても大きく変動する形質であるため、遺伝様式も複雑で解明は容易ではない。したがって、量的形質の測定値である表現型値の大小または優劣から、できるだけ正確に遺伝子効果の大小を判定する目安が必要となる。この目安が遺伝率とよばれ、これから表現型値に対する遺伝的効果と環境効果の割合を推定することができる。

 量的形質では、遺伝率が低い形質が多く、これらの場合は血縁関係にある集団の平均能力の高い家系をすべて選抜する家系選抜を行うことになる。たとえば、兄妹の記録による兄妹選抜とか、子の平均能力をもとに親を選抜する後代検定を行い、これらの間で交配繁殖をさせる。さらに、家畜や家禽育種の目的をより容易に効果的に達成するために、量的形質に関与する質的形質として、ある種の血液型や血中タンパク質の変異型を解明する研究がなされている。これらの発見を家畜や家禽の育種技術に導入する試みも進められている。

 乳牛のように、生産に従事する個体(実用種)が同時に繁殖用の個体(種畜)として子孫を増やしていく家畜種では、飼育群のすべてを遺伝的に改良していかなければならない。そのため、生産能力を正確に把握する目的で能力検定を実施し、遺伝的に優れた個体を選抜して交配を重ねていく。この場合、能力が現れない雄については後代検定の成績で選抜される。一方、ブタや採卵鶏、ブロイラーなどのように、実際に利用される個体は子孫を残すことがなく、繁殖群は別にある家畜種(養蚕も同じ)では、実用畜として雑種強勢を利用することが非常に効果的である。そのため種畜群については、乳牛の場合と同様に能力検定を実施して遺伝的改良を進めるとともに、F1に雑種強勢が期待できるように近親交配を重ねて近交系を作出し、さらにこれらの系統間の合い性を検定する特殊な選抜法を行って、実用畜としてはこれらの間の一代雑種や、3系統が関与する三元交雑種、4系統が関与する四元交雑種を利用することが広く行われている。

 家畜繁殖技術の進歩は目覚ましく、精液や受精卵の凍結保存法の完成は、人工授精や人工妊娠(受精卵移殖)を実用化し、1個体の繁殖力を飛躍的に増大させた。これらの技術が、遺伝的に優れた種畜の有効利用ということを通して家畜育種に果たした貢献は著しいものがある。さらにバイオテクノロジーの技術を利用して、親と同一の遺伝子をもつ個体を得るクローン技術によって、クローン羊、クローン牛などが出現している。

[西田恂子]

水産生物の育種技術

キンギョ、コイ、マス類などのように、交雑や突然変異を利用して古くから生産技術が確立されているものもあるが、養殖生産量が多いブリ(ハマチ)やウナギはまだ再生産技術が確立されておらず、野生種を飼育しているにすぎない。1990年代から養殖されているアユやマダイも野生種の養殖から脱しきれず、選抜された養殖種をもとに人為的完全養殖が進んでいるのは、前記のキンギョやコイのほか、ニジマスやアサクサノリなどである。これら優れた遺伝的形質をもつ養殖種のほとんどは、偶然に選抜されたもので、その種類は限られている。この養殖種は選抜育種によるもので、ニジマスでは若年成熟や早期産卵が促進され、1年に2回産卵できる個体も得られ、アサクサノリでは成長速度の大きい多収性品種が育成されている。コイでは品種間の交雑により、成長率や耐病性において雑種強勢となったF1が得られているが、F2となると、F1で得られた優性形質が失われることが多い。人工環境下での育種では、野生種よりも養殖種のほうが産業的に有利であるが、自然環境下に置かれると、養殖種と野生種の自然雑種を生じ、形質の退行雑種が出現するという問題がおこる。

 染色体の研究も1980年代に進歩し、その核型が明らかになるとともに、発生途中の受精卵に低温処理のような物理的刺激を与えることにより、染色体組数の三倍体や四倍体をつくり、短期間での大形化や不妊性を利用する試みがなされ、コイやヌマガレイなどで成功している。これら細胞遺伝学的基礎研究の進歩により、魚類の育種技術はさらに発達することが期待される。

[出口吉昭]

『蓬原雄三編著『育種とバイオサイエンス』(1993・養賢堂)』『佐々木義之著『動物の遺伝と育種』(1994・朝倉書店)』『池橋宏著『植物の遺伝と育種』(1996・養賢堂)』『水間豊他著『新家畜育種学』(1996・朝倉書店)』『熊井英水編『水産増養殖システム1 海水魚』(2005・恒星社厚生閣)』『隆島史夫・村井衛編『水産増養殖システム2 淡水魚』(2005・恒星社厚生閣)』

[参照項目] | 育種学 | 遺伝学 | 遺伝子組換え食品 | 遺伝資源 | 遺伝子工学 | クローン牛 | クローン羊 | 雑種 | 水産増殖 | 品種改良
雑種強勢利用(ブタの例)
雑種強勢を利用した育種は盛んに行われ、ブタの例では、四元雑種の利用が組織的に実施されている。この場合、種豚(原々種)は父系・母系でそれぞれ異なった改良目標に向けて育種し、純粋に維持される。肥育豚を生産する原種のブタは父も母も一代雑種なので、雑種強勢効果が発育や繁殖の面で期待できる。また、この両親の間に生まれる肥育豚にも四元雑種として強勢効果は現れる。この場合、原種もその子の肥育豚も1代限りの利用で屠殺される実用豚である©Shogakukan">

雑種強勢利用(ブタの例)


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Ikṣuvāku Dynasty - Ikṣuvāku

>>:  Ikushima Tarushima Shrine - Ikushima Tarushima Shrine

Recommend

Sierpiński, W.

…The position advocated by Broel is called intuit...

Bound electron

…In particular, the conduction electrons of metal...

melancholia

...However, after the age of 20, the blood vessel...

Carved sheath - Carved sheath

〘Noun〙 The sheath for a katana or a waist sword ha...

Dai [Hot Spring] - Dai

This hot spring is located in Yumoto, Hanamaki Cit...

Hachinohe [city] - Hachinohe

A city facing the Pacific Ocean in the southeaster...

Freyr

...According to Gylfaginning in Snorri Sturluson&...

Canadian Air Force

...Generally, the military is made up of three se...

Fuze - shinkan (English spelling) fuze

An ignition device for exploding or igniting the ...

Sixth Dan

The title of a koto piece. It is an abbreviation ...

Buccinum tenuissimum

…[Tadashige Nabe]. . … *Some of the terminology t...

Kingi, W. (English spelling) KingiW

...The Maori rebelled against the pakeha (white p...

autotroph

…Some of them are shown in the table. (2) Differe...

Saccopharyngidae

...Although it has not been reported from the wat...

makutam

...The rhythm is highly developed, and improvisat...