Thermal conduction

Japanese: 熱伝導 - ねつでんどう(英語表記)conduction of heat
Thermal conduction

This is the phenomenon in which heat flows from high temperature areas to low temperature areas inside a solid. Heat is a form of energy, and when heat flows out, the temperature of that area decreases, and when heat flows in, the temperature increases. When there is a temperature difference inside an object, heat moves from high temperature areas to low temperature areas, and the movement stops when the entire object becomes the same temperature. This state is thermal equilibrium. There are two types of thermal conduction: conduction by conduction electrons and conduction by lattice vibration. In metals, which are good conductors of electricity, both of these occur together, and heat transfer is much better than insulators that only use lattice vibration, except in special cases. The quantity that expresses the degree of heat transfer is called thermal conductivity (or thermal conductivity). The relationship between heat flow and thermal conductivity can be easily understood by thinking of it as follows. If we write the amount of heat flowing in one second through a cross-sectional area s perpendicular to the flow as Q , Q is given by the product of the temperature gradient measured in the direction of the flow and the thermal conductivity K.

Q = K × [temperature gradient] × s
The unit of thermal conductivity is "joule/sec cm °C" or the international unit "watt/m K" (the unit K is Kelvin, which represents absolute temperature, but it is the same as °C when expressing temperature difference). Thermal conductivity generally varies depending on the temperature and pressure of the object, and in anisotropic crystals, the value varies depending on the direction. Metals, which are good conductors of electricity, have a high thermal conductivity compared to insulators. This is evidence that thermal conduction by conduction electrons is much greater than thermal conduction by lattice vibration. In fact, in many metals, the ratio of thermal conductivity to electrical conductivity multiplied by the reciprocal of absolute temperature is close to the Wiedemann-Franz constant, so it can be considered that thermal conduction in metals is mainly due to conduction electrons. However, in many alloys, the degree of scattering of conduction electrons by the crystal lattice is large, and the contribution of conduction electrons is not necessarily greater than the contribution of lattice vibration. This can also be inferred from the fact that the thermal conductivity of stainless steel is much smaller than that of aluminum.

Among insulators that are expected to have low thermal conductivity, there is an exceptional material that exhibits a thermal conductivity greater than that of metals. Diamond is one such material, and its thermal conductivity is two to four times that of silver, the highest of all metals. This large value is due to the fact that the speed at which lattice vibration waves pass through the sample is by far the fastest of all materials. Diamond is the least conductive of all materials, but at the same time the most conductive of all materials, and so thin films of diamond have been produced and are now used to cool highly integrated devices. Please refer to the table below for the thermal conductivity (at room temperature) of some representative materials.

[Seiichiro Noguchi]

[References] | Wiedemann-Franz law | Conduction electrons | Heat
Thermal conductivity (at room temperature) [Table]
©Shogakukan ">

Thermal conductivity (at room temperature) [Table]


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

固体の内部で熱が温度の高い部分から低い部分へと流れていく現象をいう。熱はエネルギーの形態の一つで、熱が流出することによってその部分の温度が下がり、流入によって温度が上がる。物体の中で温度差があると、高温部から低温部へと熱の移動がおこり、全部が同じ温度になったところで移動が止まる。この状態が熱平衡である。熱伝導には、伝導電子による伝導と格子振動による伝導とがある。電気の良導体である金属では、この両者が相伴っておこっており、格子振動のみによる絶縁体に比べて、特別の場合を除き、はるかによく熱の移動が行われる。その程度を表す量を熱伝導度(あるいは熱伝導率)という。熱の流れと熱伝導率の関係は次のように考えるとわかりやすい。いま、流れに垂直な断面積sを通って1秒間に流れる熱量をQと書くと、流れの方向に測った温度勾配(こうばい)と熱伝導率Kの積でQが与えられる。

  QK×[温度勾配]×s
熱伝導率の単位は「ジュール/秒・cm・℃」または国際単位「ワット/m・K」が使われている(単位のKは絶対温度を表すケルビンであるが、温度差を表す数値としては℃と変わらない)。熱伝導度は、物体の温度や圧力によっても一般に異なる値をとり、また異方性の結晶では、方向によって値が異なる。電気の良導体である金属は、絶縁体に比較して大きな熱伝導度をもつ。これは、伝導電子による熱伝導が格子振動による熱伝導よりもはるかに大きいことを示す証拠といえる。実際に多くの金属において、熱伝導度と電気伝導度の比に絶対温度の逆数を掛けた値がウィーデマン‐フランツの定数に近い値を示すことから、金属の熱伝導は主として伝導電子によると考えることができる。ただし、金属のなかでも、多くの合金では伝導電子が結晶格子によって散乱される程度が大きく、伝導電子による寄与は格子振動による寄与に比較してかならずしも大きいとはいえない。これは、ステンレス鋼などの熱伝導度がアルミニウムなどに比べてはるかに小さいことからも推定できる。

 熱伝導率が小さいと予想される絶縁体のなかで、金属より大きな熱伝導率を示す例外的な物質がある。ダイヤモンドがそれで、熱伝導率は金属のなかでも最大の銀の2倍から4倍の値をもっている。この大きな値は、格子振動の波が試料の中を通過する速度がダイヤモンドではすべての物質のなかでとびぬけて大きいことによっている。ダイヤモンドはもっとも電気を通しにくいと同時にもっとも熱を通しやすいという性質をもつことにより、ダイヤモンドの薄膜が製作されるようになって、高度集積素子の冷却のために利用されるようになった。なお、いくつかの代表的物質の熱伝導率(室温の値)をに示したので参照されたい。

[野口精一郎]

[参照項目] | ウィーデマン‐フランツの法則 | 伝導電子 |
熱伝導率(室温の値)〔表〕
©Shogakukan">

熱伝導率(室温の値)〔表〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Thermobalance (thermo-balance)

>>:  Thermocouple - thermocouple

Recommend

Arago

French astronomer and physicist. In 1805, he worke...

Trucial Oman (English) TrucialOman

…Great troubled by the actions of these Arab shei...

Shāhsevān (English spelling)

A nomadic Turkic tribe in the Azerbaijan region of...

Cardiac beriberi

A slang term for beriberi symptoms that appear in ...

Imperial House Law

A law that stipulates important matters related t...

Mount Myoko

It is the main peak of the Myoko volcanic group, ...

prevotdeParis

...The professors and students of the episcopal a...

Nishinasuno [town] - Nishinasuno

An old town in Nasu County, occupying the western ...

Iijima [town] - Iijima

A town in Kamiina County in southern Nagano Prefec...

Enargite (enargite)

A mineral with the chemical composition Cu 3 AsS 4...

Domestic violence - Domestic violence

In a broad sense, it refers to violence between f...

Phycology

…While the living world is divided into two major...

maison

…These traditions were generally strong in conser...

Hypodermis - Skin

…In arthropods and mollusks, a tough outer membra...