Hyperfunctions

Japanese: 超関数 - ちょうかんすう
Hyperfunctions

Dirac's delta function has been used effectively in physics, but mathematically it does not fit the definition of a function. Therefore, Schwartz expanded the concept of functions to include these, and also to allow for free differential operations and Fourier analysis. Schwartz named them distributions, but in Japan they are called generalized functions. In practical applications, functions of multiple variables are often considered, but we will introduce the idea in the case of one variable. Let be the set of functions of a real variable x that are infinitely continuously differentiable and identically 0 when |x| is large. Now, if f(x) is a continuous function, then for (x)∈,

is a linear functional of the above, which is continuous in the sense that for any finite interval I, for (x)∈0 outside I,

In general, for any finite interval I in the linear functional T() above, a constant M and a natural number p are determined. For any function (x) ∈ that is 0 outside I,

When T is a generalized function, for example,
δ()=(0)
δ, defined as, is also a generalized function (Dirac delta function). Generalized functions S and T are equal (S=T) if, for any (x)∈, S()=T(). To differentiate generalized function T, if (x)∈, use its derivative ′(x)∈, and consider -T(′) as a functional of , then generalized function T′ is,
T′()=-T(′)
This T' is called the derivative of T (as a generalized function). This is a natural definition because if f(x) is differentiable, then

This can be seen from partial integration, therefore (T f )′=T f' .

Heaviside function H(x)=0(x<0),
H(x) = 1 (x>0)
If we consider it as a generalized function and differentiate it, we get

Therefore, (TH)' = δ, which is also an important relationship in practical applications. Since we can define a derivative for the generalized function T, we can think of differential equations in the sense of generalized functions. In particular,
P(D)T=a 0 (x)T (n) +a 1 (x)T (n-1) +
……+a n (x)T=δ
A generalized function T that satisfies is called a fundamental solution. Once the fundamental solution is found, a solution for any right-hand side can be found, so finding the fundamental solution is a problem in differential equations.

[Haruo Sunouchi]

Fourier transform of generalized functions

As a natural function that can be defined by the Fourier transform, there is a rapidly decreasing function (a function that can be continuously differentiated infinitely many times, and for any natural numbers m and n, when |x|→∞, |x m (n) (x)|→0). If we express the set of such functions as , then it becomes ⊂. The Fourier transform of (x)∈ is

Then, (ξ)∈, and the inverse transformation is

The generalized function T determined as the continuous linear functional above is called a relaxed generalized function. The derivative can be defined as before, but furthermore, the Fourier transform can be defined by using (x)∈,
()=T()
It is defined as a gentle generalized function determined as follows.

The Fourier transform of the delta function δ is

etc.

[Haruo Sunouchi]

Application to partial differential heat equation

Heat conduction in an infinitely long wire can be expressed by the heat equation, where u(t,x) is the temperature at time t and location x.

If we take the Fourier transform of u(t,x) with t as a parameter and x as a function (generalized function), we get

So,

This is an ordinary differential equation for t, if we consider ξ as a parameter, so the solution is

Therefore, if we can find the inverse Fourier transform of this, it is the solution we are looking for.

[Haruo Sunouchi]

[Reference] | Delta function

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

ディラックのデルタ関数は物理学では有効に用いられてきたが、数学的には関数の定義に当てはまらない。そこでシュワルツはこれらを含むように、しかも微分演算やフーリエ解析が自由にできるように関数概念を拡張した。シュワルツはそれをdistributionsと名づけたが、日本では超関数とよんでいる。応用上は多変数の関数を考えることが多いが、一変数の場合にその考え方を紹介しておこう。実変数xの、無限回連続微分可能で、|x|が大きいとき恒等的に0になる関数の集合をで表す。いま、f(x)を連続関数とすると、(x)∈に対し、

は上の線形汎関数(はんかんすう)になり、次の意味で連続になる。任意の有限区間Iに対し、Iの外で0になる(x)∈に対し

 一般に、上の線形汎関数T()で、任意の有限区間Iを与えると、定数M、自然数pが決まり、Iの外で0となる任意の関数(x)∈に対し、

となるとき、Tを超関数という。たとえば、
  δ()=(0)
として定義されるδも超関数(ディラックのデルタ関数)である。超関数S、Tが等しい(S=T)とは、任意の(x)∈に対し、S()=T()となることとする。超関数Tの微分は、(x)∈ならば、その導関数′(x)∈を用い、-T(′)をの汎関数と考えると、超関数T′が、
  T′()=-T(′)
として決まる。このT′をTの(超関数としての)導関数という。これが自然な定義であることは、f(x)が微分可能ならば、

が部分積分より、ゆえに(Tf)′=Tf'となることよりわかる。

 ヘビサイド関数
  H(x)=0(x<0),
  H(x)=1(x>0)
を超関数と考えて微分すると、

より、(TH)′=δで、これも応用上重要な関係である。超関数Tに微分が定義できるから、超関数の意味で微分方程式を考えることができる。とくに、
  P(D)T=a0(x)T(n)+a1(x)T(n-1)+
   ……+an(x)T=δ
を満足する超関数Tを基本解という。基本解が求まると、任意の右辺に対する解が求まるので、微分方程式では基本解を求めることが問題になる。

[洲之内治男]

超関数のフーリエ変換

フーリエ変換の定義できる自然な関数として、急減少関数(無限回連続微分可能、任意の自然数m、nに対し、|x|→∞のとき、|xm(n)(x)|→0となるもの)がある。その集合をで表すと、⊂となる。(x)∈のフーリエ変換を

で定義する。すると、(ξ)∈となり、逆変換として

が成り立つ。上の連続な線形汎関数として決まる超関数Tを緩やかな超関数という。これにも微分が前と同様に定義できるが、さらに、フーリエ変換を、(x)∈を用いて、
  ()=T()
として決まる緩やかな超関数で定義する。

 デルタ関数δのフーリエ変換は

などがいえる。

[洲之内治男]

偏微分熱方程式への応用例

無限に長い針金の熱伝導は、時刻t、場所xにおける温度をu(t,x)とすると、熱方程式

で与えられる。u(t,x)を、tをパラメーター、xの関数として(超関数として)フーリエ変換をとると、

となるから、

これはξをパラメーターと考えると、tの常微分方程式、よって解は

となる。よって、これのフーリエ逆変換が求まれば、それが求める解である。

[洲之内治男]

[参照項目] | デルタ関数

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Intertidal zone

>>:  Bird's-eye view

Recommend

"The Gon Chunagon Who Doesn't Cross Osaka"

...It may have been lost during the Onin War, whi...

Birmingham Canal Navigations

A general term for the canals around Birmingham in...

Papeete

The capital of the Society Islands in French Polyn...

Hammer beam

Cantilever beams were used in the sophisticated ra...

full vocalization

... At the end of the 10th century, Christianity ...

Barrow, I.

…Natural science was hardly taught in European un...

Yamaga [town] - Yamaga

This old town occupies the right bank of the upper...

optional referendum

...The first type, which is used in about half of...

Tadamitsu Nakayama

A nobleman of the Sonno Joi faction in the late E...

executive branch

...The second point of terminology is that the ac...

Psychoda alternata (English spelling) Psychodaalternata

…Terrestrial species include those that feed on h...

Ortega y Munilla, J.

…Spanish philosopher. His family had many people ...

Basic predictions - Kihonyosou

... When it comes to real number theory or analys...

Galton

(Sir Francis Galton) British geneticist. Cousin of...

Paraguay [River] - Paraguay

A river in central South America. It is about 2,55...