A device that generates a high gravitational field by rotating a tube containing a solution at ultra-high speed, increasing the settling speed of the solute. The settling speed of spherical particles is related to the particle radius according to Stokes' law. In order to increase gravity to increase the settling speed of small particles to a measurable level, Swedish physical chemist Svedberg and others developed an ultracentrifuge using an oil-driven turbine around 1923. It was later improved to use an electric motor, making it possible to obtain centrifugal forces hundreds of thousands of times greater than gravity. The sample is placed inside a metallic rotating body called a rotor, and the chamber in which the rotor rotates is kept at a high vacuum to prevent heat generation due to air friction. There are two types of ultracentrifuges: analytical and preparative. (1) Analytical ultracentrifuges Equipped with an optical system for observing the Schlieren interface of a settling substance, the interface can be photographed, and the settling velocity can be easily determined from the centrifugal conditions and boundary image. If the settling velocity is known, the molecular weight can be determined from the diffusion constant, the density of the solution, and the molar specific volume of the particles. (2) Preparative ultracentrifuges: Used to precipitate extremely small particles. Ribosomes and other particles can be obtained by subjecting the supernatant, which is obtained by removing the material that precipitates in a normal high-speed centrifuge from the cell lysate, to an ultrahigh-speed centrifuge. Cell lysates suspended in a high-density sucrose solution are ultracentrifuged to fractionate and purify organelles by utilizing the small density differences and differences in size (radius of gyration) of intracellular granules, and are also used to fractionate nucleic acids by their buoyant density differences using a cesium chloride solution. [Taku Shimada] "Advances in Chemical Engineering, Vol. 28: Fluid and Particle Separation" edited by the Society of Chemical Engineering (1994, Maki Shoten)" ▽ "Particle Size Measurement Technology" edited by the Society of Powder Technology (1994, Nikkan Kogyo Shimbun)" [References] | | | |Gravitational |Schlieren | | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
溶液の入ったチューブを超高速回転させることにより高い重力場を発生させ、溶質の沈降速度を高める装置。球形粒子の沈降速度はストークスの法則により粒子半径と関係している。重力を増して小さな粒子の沈降速度を測定可能なまでに高めるため、1923年ごろスウェーデンの物理化学者スベドベリーらが油駆動タービンを用いた超遠心機を開発した。その後改良が加えられ、電気駆動モーターを用い、重力の数十万倍の遠心力が得られるようになった。試料はローターとよばれる金属製回転体中に入れるが、空気摩擦による発熱を避けるため、ローターの回転する室内は高真空となっている。超遠心機には分析型と調製型の2種がある。 (1)分析型超遠心機 沈降する物質のシュリーレン界面を見るための光学系を備えており、界面を写真に撮ることができ、遠心条件と境界像から容易に沈降速度を知ることができる。沈降速度がわかれば、拡散定数、溶液の密度、粒子のモル比容から分子量を決定できる。 (2)調製型超遠心機 極微小粒子を沈殿させるのに用いられる。細胞破砕液から通常型の高速遠心機で沈殿するものを除いた上澄みをさらに超高速遠心機にかけることにより、リボゾームなどを得ることができる。高密度ショ糖液に懸濁した細胞破砕物を超遠心し、細胞内顆粒(かりゅう)の小さな密度差や大きさ(回転半径)の差違を利用して細胞小器官などを分画精製したり、塩化セシウム溶液を用いて核酸を浮遊密度差で分画するのにも用いられる。 [嶋田 拓] 『化学工学会編『化学工学の進歩 第28集 流体・粒子系分離』(1994・槇書店)』▽『粉体工学会編『粒子径計測技術』(1994・日刊工業新聞社)』 [参照項目] | | | | | | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
>>: Cho Yŏn-hyŏn (English spelling)
...Also, the set of all quadratic matrices for wh...
...In the former Soviet Union, the language of th...
...A general term for a long, slender, whip-like ...
The most important lead ore. It occurs in various...
...Also called Tamarix (illustration). A deciduou...
A Myo-o-sect deity consisting of a set of four gr...
A type of forced labor in the Ming Dynasty of Chin...
...These styles have been passed down throughout ...
Years of birth: unknown. An Edo townsman who worke...
Czechoslovakian novelist, poet, and playwright. B...
… [Arai Seiji] [Establishment of Factories in Jap...
…Hammocks were first introduced to Western Europe...
There are two types of tree buds: those that becom...
…[Susumu Fujita] Many prehistoric rock paintings ...
A diagram showing the relationship between the pri...