Generalizing the idea of a polynomial in x with real coefficients, we can write a 0 x n + a 1 x n -1 +……+ a n for a commutative field k and a letter x. An important aspect of the theory of polynomial rings is the uniqueness theorem for decomposition into irreducible polynomials. If a polynomial f ( x ) over a commutative field k can be expressed as (1) f (x) = g ( x ) h ( x ) in terms of polynomials g ( x ) and h ( x ) also over k , and (2) g ( x ) and h ( x ) have lower degrees than f ( x ), then f ( x ) is said to be reducible over k . If (1) and (2) are not possible, then f(x) is said to be irreducible over k . Irreducible polynomials in a polynomial ring are like prime numbers in a ring of integers. Just as every integer can be uniquely expressed as a product of powers of prime numbers (e.g., 100=2 ^2 × 5 ^2 ), it has been proven that every polynomial can be uniquely expressed as a power of an irreducible polynomial, which is the basis of the theory of algebraic equations. Furthermore, a rational expression over k is an expression that can be expressed as f ( x )/ g ( x ) for polynomials f ( x ), g (x) over k (where g ( x ) ≠ 0). The set of rational expressions over a commutative field k is also a commutative field, which is called the field of rational functions. [Terada Fumiyuki] [Reference item] |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
実数を係数とするxの多項式の考えを一般化して、可換体kと文字xに対して 多項式環の理論のなかで重要なのは、既約な多項式への分解への一意性の定理である。可換体k上の多項式f(x)が、同じくk上の多項式g(x),h(x)によって 多項式環における既約な多項式は、整数環における素数のようなものである。整数の場合に「任意の整数は素数の累乗の積の形に一意的に表される」(たとえば100=22×52)ように、「任意の多項式は既約多項式の累乗の形に一意的に表される」ことが証明され、これが代数方程式の理論の基礎となっている。 さらにk上の有理式とは、k上の多項式f(x),g(x)(ただしg(x)≠0)に対してf(x)/g(x)と表される式のことである。可換体k上の有理式の全体はまた一つの可換体であり、これを有理関数体という。 [寺田文行] [参照項目] |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Porous glass - Takoshitsugarasu (English spelling)
>>: Polynomial - Takoshiki (English spelling) polynomial
A Chinese poet from the prosperous Tang Dynasty. ...
〘Noun〙 One of the 100 riflemen. In 1585, the monks...
A Meiji period bureaucrat and politician. Viscoun...
A disease of horses. Symptoms include sudden enter...
1878-1947 A physiologist from the Meiji to Showa ...
A poetic form that originated in Arabia. It is tra...
A type of climate in the polar regions. Polar cli...
This gospel of unknown authorship is said to be t...
This area is located in Higashiyama Ward, Kyoto C...
…Official name: CanadaArea: 9,976,100 km2Populati...
A gauge that is the standard for measuring length....
A discontinuity between different water masses. Th...
In cutting-edge technology fields such as space de...
A plateau in central Iwate Prefecture stretching f...
A province in the western part of North China, Chi...