Polynomial ring

Japanese: 多項式環 - たこうしきかん
Polynomial ring

Generalizing the idea of ​​a polynomial in x with real coefficients, we can write a 0 x n + a 1 x n -1 +……+ a n for a commutative field k and a letter x.
An expression of the form is called a polynomial in x over k . Let us denote the set of polynomials in x over k by k [ x ], and call this k [ x ] a polynomial ring over k . Sum and product are defined in the usual way for polynomials, and k [ x ] becomes a commutative ring.

An important aspect of the theory of polynomial rings is the uniqueness theorem for decomposition into irreducible polynomials. If a polynomial f ( x ) over a commutative field k can be expressed as (1) f (x) = g ( x ) h ( x ) in terms of polynomials g ( x ) and h ( x ) also over k , and (2) g ( x ) and h ( x ) have lower degrees than f ( x ), then f ( x ) is said to be reducible over k . If (1) and (2) are not possible, then f(x) is said to be irreducible over k .

Irreducible polynomials in a polynomial ring are like prime numbers in a ring of integers. Just as every integer can be uniquely expressed as a product of powers of prime numbers (e.g., 100=2 ^2 × 5 ^2 ), it has been proven that every polynomial can be uniquely expressed as a power of an irreducible polynomial, which is the basis of the theory of algebraic equations.

Furthermore, a rational expression over k is an expression that can be expressed as f ( x )/ g ( x ) for polynomials f ( x ), g (x) over k (where g ( x ) ≠ 0). The set of rational expressions over a commutative field k is also a commutative field, which is called the field of rational functions.

[Terada Fumiyuki]

[Reference item] | Algebraic equations

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

実数を係数とするxの多項式の考えを一般化して、可換体kと文字xに対して
  a0xn+a1xn-1+……+an
という形の式をkxの多項式という。kxの多項式全体をkx]で表し、このkx]をk上の多項式環という。多項式に対しては通常の方法で和と積が定義され、kx]は可換環になる。

 多項式環の理論のなかで重要なのは、既約な多項式への分解への一意性の定理である。可換体k上の多項式f(x)が、同じくk上の多項式g(x),h(x)によって
(1)f(x)=g(x)h(x)と表される
(2)g(x),h(x)はf(x)より低次数
であるとき、f(x)はk上可約であるといわれ、(1)、(2)のようにはできないとき、k上既約であるといわれる。

 多項式環における既約な多項式は、整数環における素数のようなものである。整数の場合に「任意の整数は素数の累乗の積の形に一意的に表される」(たとえば100=22×52)ように、「任意の多項式は既約多項式の累乗の形に一意的に表される」ことが証明され、これが代数方程式の理論の基礎となっている。

 さらにk上の有理式とは、k上の多項式f(x),g(x)(ただしg(x)≠0)に対してf(x)/g(x)と表される式のことである。可換体k上の有理式の全体はまた一つの可換体であり、これを有理関数体という。

[寺田文行]

[参照項目] | 代数方程式

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Porous glass - Takoshitsugarasu (English spelling)

>>:  Polynomial - Takoshiki (English spelling) polynomial

Recommend

Triiodothyronine

…The thyroid hormones secreted from the follicles...

All-Risk Method

… (2) Comprehensive movable property insurance: I...

Official road - Kando

〘 noun 〙 A road that is constructed and supervised...

Drifting - Drifting

To be on a ship that cannot be steered due to a s...

Fumaric acid - Fumarusan (English spelling)

An unsaturated dicarboxylic acid. It is a geometr...

Nazis - Nachisu (English spelling)

The nickname for the National Socialist German Wo...

Kongoshoji Temple

A Rinzai sect Nanzenji temple located on the summi...

Former country - Kyukoku

〘 noun 〙① A country with a long history. A country...

Ishikawa Hidetsurumaru

1878-1947 A physiologist from the Meiji to Showa ...

Inazawa [city] - Inazawa

Aichi Prefecture is a city located in the northwes...

Forestry subsidies - forestry subsidies

Subsidies provided by the national government to s...

Dake [Hot Spring] - Only

9km west of Nihonmatsu city, Fukushima prefecture....

Nukualofa - Nukualofa (English spelling)

The capital of the Kingdom of Tonga in the South ...

Downward motion; descending current

An air current with a downward vertical component....

Harvestman - Harvestman (English spelling)

A general term for arthropods belonging to the ord...