Generalizing the idea of a polynomial in x with real coefficients, we can write a 0 x n + a 1 x n -1 +……+ a n for a commutative field k and a letter x. An important aspect of the theory of polynomial rings is the uniqueness theorem for decomposition into irreducible polynomials. If a polynomial f ( x ) over a commutative field k can be expressed as (1) f (x) = g ( x ) h ( x ) in terms of polynomials g ( x ) and h ( x ) also over k , and (2) g ( x ) and h ( x ) have lower degrees than f ( x ), then f ( x ) is said to be reducible over k . If (1) and (2) are not possible, then f(x) is said to be irreducible over k . Irreducible polynomials in a polynomial ring are like prime numbers in a ring of integers. Just as every integer can be uniquely expressed as a product of powers of prime numbers (e.g., 100=2 ^2 × 5 ^2 ), it has been proven that every polynomial can be uniquely expressed as a power of an irreducible polynomial, which is the basis of the theory of algebraic equations. Furthermore, a rational expression over k is an expression that can be expressed as f ( x )/ g ( x ) for polynomials f ( x ), g (x) over k (where g ( x ) ≠ 0). The set of rational expressions over a commutative field k is also a commutative field, which is called the field of rational functions. [Terada Fumiyuki] [Reference item] |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
実数を係数とするxの多項式の考えを一般化して、可換体kと文字xに対して 多項式環の理論のなかで重要なのは、既約な多項式への分解への一意性の定理である。可換体k上の多項式f(x)が、同じくk上の多項式g(x),h(x)によって 多項式環における既約な多項式は、整数環における素数のようなものである。整数の場合に「任意の整数は素数の累乗の積の形に一意的に表される」(たとえば100=22×52)ように、「任意の多項式は既約多項式の累乗の形に一意的に表される」ことが証明され、これが代数方程式の理論の基礎となっている。 さらにk上の有理式とは、k上の多項式f(x),g(x)(ただしg(x)≠0)に対してf(x)/g(x)と表される式のことである。可換体k上の有理式の全体はまた一つの可換体であり、これを有理関数体という。 [寺田文行] [参照項目] |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Porous glass - Takoshitsugarasu (English spelling)
>>: Polynomial - Takoshiki (English spelling) polynomial
…The thyroid hormones secreted from the follicles...
… (2) Comprehensive movable property insurance: I...
〘 noun 〙 A road that is constructed and supervised...
To be on a ship that cannot be steered due to a s...
An unsaturated dicarboxylic acid. It is a geometr...
The nickname for the National Socialist German Wo...
A Rinzai sect Nanzenji temple located on the summi...
〘 noun 〙① A country with a long history. A country...
1878-1947 A physiologist from the Meiji to Showa ...
Aichi Prefecture is a city located in the northwes...
Subsidies provided by the national government to s...
9km west of Nihonmatsu city, Fukushima prefecture....
The capital of the Kingdom of Tonga in the South ...
An air current with a downward vertical component....
A general term for arthropods belonging to the ord...