It is a science based on chemistry that uses chemical methods to determine the components of living organisms, elucidate their state and the chemical reactions between them within living organisms, and studies their significance in the living phenomena of living organisms; it is also called biological chemistry. Biochemistry covers a very wide range of research subjects, including animal biochemistry, plant biochemistry, microbial biochemistry, and human biochemistry. However, there are surprising commonalities in the chemical composition and chemical reactions within living organisms, from higher animals and plants to microorganisms. That is, the main players in cellular activity are proteins and nucleic acids, and other substances such as carbohydrates and lipids are also present, and their roles and metabolism are also basically the same. General biochemistry deals with these fields. Comparative biochemistry is based on a chemical understanding of the commonalities between living organisms and chemically elucidates the differences between living organisms, contributing to our understanding of the evolution, genetics, and classification of living organisms. In other words, today, almost all areas of biology are researched based on biochemistry. In general, chemical phenomena are ultimately elucidated at the molecular level, and biochemistry also begins at the molecular level. Traditionally, natural product chemistry or bioorganic chemistry has focused mainly on low molecular weight organic compounds such as alkaloids, steroids, and terpenes, which are considered to be in the field of organic chemistry. In contrast, research into the structure and function of natural polymeric compounds such as proteins, nucleic acids, and polysaccharides is biochemistry at the molecular level. In other words, research into the relationship between the structure and function of enzyme proteins, as well as the elucidation of the expression and transmission mechanisms of genetic information through interactions between deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and proteins, are biochemical research at the molecular level, and are also called molecular biology. Biochemistry at the cellular level is called cytochemistry, and involves the study of the composition, structure (higher-order structure resulting from the interaction of many biopolymers), function, and metabolism of whole cells or cell organelles (nucleus, mitochondria, cell membrane, endoplasmic reticulum, etc.). The biochemistry of individual multicellular organisms (such as human biochemistry) is specifically called physiological chemistry, and was the mainstream of classical biochemistry. The above is biochemistry in the narrow sense, but there are higher-level fields that expand the scope of time and space, such as geobiochemistry, astrobiochemistry, and paleontological chemistry. Applied biochemistry also includes pathochemistry, nutritional chemistry, fermentation chemistry, and food chemistry, and has a wide range of applications to human welfare. The field of life sciences, which has particularly come to prominence since the 1960s, has addressed basic problems in life from multiple angles, centered on molecular biology and animal behavior, and has developed to directly encompass human life and living, including issues of higher functions such as memory and consciousness, biomedical technology aspects including artificial organs and gene manipulation, and ecosystems such as global environmental issues. Furthermore, medicinal chemistry was separated from physiology, a branch of basic medicine, as a branch that deals with chemical aspects, but with the subsequent development of biochemistry, it has come to be considered a part of biochemistry in a broad sense. However, given the unique nature of the human body, which is the subject of its study, it is a field that cannot be equated with general biochemistry. This position leads to new ethical issues that must be addressed in the age of life sciences. [Makoto Kageyama] ``Biochemistry Experiments'' edited by Hayashi Junzo and written by Asano Tsutomu et al. (1998, Kenpakusha)' ' ▽ ``Biochemistry Dictionary, 3rd edition, supervised by Imahori Kazutomo and Yamakawa Tamio, edited by Inoue Keizo et al. (1998, Tokyo Kagaku Dojin)' ' ▽ ``Nutrition Science Series NEXT Biochemistry'' edited by Kato Hideo et al. (1998, Kodansha)'' ▽ ``First Biochemistry - The Why of Life?'' by Hirasawa Eiji "Basic knowledge to understand living things" (1998, Kagaku Dojin) " ▽ "Experimental Production Environmental Biology" edited by the Department of Production and Environmental Biology, Graduate School of Agriculture and Life Sciences, The University of Tokyo (1999, Asakura Shoten)" ▽ "Introduction to Biochemistry" by Maruyama Kousaku (1999, Shokabo) " ▽ "Biochemistry to understand living things" by Ikekita Masahiko et al. (1999, Maruzen)" ▽ "Vought's Basic Biochemistry" by D. Vogt et al., translated by Tamiya Nobuo et al. (2000, Tokyo Kagaku Dojin)" ▽ "Biochemistry: The Basics of Basics - Concepts You Should Know" edited by Esaki Nobuyoshi and Fujita Hiromi (2002, Kagaku Dojin)" ▽ "New Biochemistry and Nutrition Experiments" edited by Yoshida Tsutomu, edited by Ito Junko and Shida Mariko, written by Shinoda Shoko et al. (2002, Sankyo Publishing)" ▽ "Nutrition and Biochemistry Dictionary" edited by Noguchi Tadashi (2002, Asakura Publishing)" ▽ "Physiology and Biochemistry Experiments, 3rd Edition, by Asami Shoji et al. (2003, Chijin Shokan)" ▽ "Simple Biochemistry, revised 4th edition, by Hayashi Norio and Hirono Haruko (2003, Nanzando)" ▽ "Biochemistry from the Basics," edited by Yoshida Tsutomu, Fujimori Yasushi et al. (2003, Gakubunsha)" ▽ "Nutrition and Health Chemistry Series: Biochemistry," edited by Oku Tsuneyuki et al., Ishibashi Genji et al. (2003, Nanzando)" ▽ " Elliot's Biochemistry and Molecular Biology," by W.H. Elliot et al., translated by Shimizu Takao and Kudo Ichiro (2003, Tokyo Kagaku Dojin)" ▽ "Biochemistry: Structure and Function of the Human Body" (2003, Kenpakusha), edited by Junzo Hayashi, edited by Koichi Kimoto et al., and written by Shinichi Kurasawa et al.; "Understanding Biochemistry" (2003, Kodansha), written by Atsushi Ikai [References] | | | | | | | | | | | | | | |Proteins| | | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
化学を基礎とし、化学的方法を用いて生物体の構成成分を決定し、生物体におけるそれらの状態や相互間の化学反応を解明し、生物体の生活現象における意義を研究する学問で、生物化学biological chemistryともいう。 生化学の研究対象はきわめて広範囲であり、動物生化学、植物生化学、微生物生化学、人体生化学などがある。しかし、高等動植物から微生物に至るまで、その化学組成や生物体内での化学反応などには驚くほどの共通性がある。すなわち、細胞活動の主要な担い手がタンパク質および核酸であること、そのほかに炭水化物や脂質などがあること、そしてそれらの役割あるいは代謝も、基本的には共通である。こうした分野を扱うのが一般生化学である。また、生物の共通性に対する化学的理解のうえにたち、生物相互の相違を化学的に解明するのが比較生化学であり、生物の進化、遺伝、分類の理解にも貢献している。すなわち、現在ではほとんどすべての領域の生物学が、生化学を基礎として研究されるようになった。 一般に化学的現象は、究極的には分子レベルで解明されるわけであり、生化学の研究対象も分子レベルに始まる。従来、天然物化学または生物有機化学は主として低分子有機化合物であるアルカロイド、ステロイド、テルペンなどを対象としており、これはむしろ有機化学の分野であるとされている。これに対して天然高分子化合物であるタンパク質、核酸、多糖などの構造と機能の研究は、分子レベルでの生化学である。すなわち、酵素タンパク質の構造と機能との関係をはじめ、デオキシリボ核酸(DNA)、リボ核酸(RNA)、タンパク質の相互作用による遺伝情報の発現と伝達機構の解明などは分子レベルにおける生化学的研究であり、これらは分子生物学ともよばれる。 細胞レベルでの生化学は細胞化学であり、細胞全体あるいは細胞器官(核、ミトコンドリア、細胞膜、小胞体など)の組成、構造(多くの生体高分子の相互作用による高次構造)、機能、代謝の研究を行う。多細胞生物の個体としての生化学(人体生化学など)はとくに生理化学とよばれ、古典的生化学の主流であった。 以上が狭義の生化学であるが、さらに時間や空間を広げた高次のものとして地球生化学、宇宙生化学、古生物化学などがある。また、応用生化学としては病理化学、栄養化学、発酵化学、食品化学などがあり、人類の福祉への応用は広い。とくに1960年代から目だってきた生命科学(ライフサイエンス)の分野では、分子生物学をはじめ動物行動学などを中心に、生命の基本的な問題に対して多角的に対処しており、記憶、意識など高次機能の問題や、人工臓器や遺伝子操作などを含む生物医学技術面、地球規模の環境問題などの生態系をも加えた、人間の生命と生活を直接包含するところにまで発展している。 なお、医化学は基礎医学のうちの生理学から化学的な面を扱う一部門として分離したものであるが、その後の生化学の発達とともに広義の生化学の一部と考えられるようになった。しかし、対象である人体の特殊性からみても、一般生化学と同一視するわけにはいかない分野である。この立場は、ライフサイエンス時代に対処すべき新しい倫理学の問題につながるものといえる。 [景山 眞] 『林淳三編、浅野勉ほか著『生化学実験』(1998・建帛社)』▽『今堀和友・山川民夫監修、井上圭三ほか編『生化学辞典』第3版(1998・東京化学同人)』▽『加藤秀夫ほか編『栄養科学シリーズNEXT 生化学』(1998・講談社)』▽『平澤栄次著『はじめての生化学――生活のなぜ?を知るための基礎知識』(1998・化学同人)』▽『東京大学大学院農学生命科学研究科生産・環境生物学専攻編『実験生産環境生物学』(1999・朝倉書店)』▽『丸山工作著『生化学入門』(1999・裳華房)』▽『池北雅彦ほか著『生物を知るための生化学』(1999・丸善)』▽『D・ヴォートほか著、田宮信雄ほか訳『ヴォート基礎生化学』(2000・東京化学同人)』▽『江崎信芳・藤田博美編著『生化学 基礎の基礎――知っておきたいコンセプト』(2002・化学同人)』▽『吉田勉監修、伊藤順子・志田万里子編著、篠田粧子ほか著『新しい生化学・栄養実験』(2002・三共出版)』▽『野口忠編著『栄養・生化学辞典』(2002・朝倉書店)』▽『阿佐美章治ほか著『生理・生化学実験』第3版(2003・地人書館)』▽『林典夫・広野治子著『シンプル生化学』改訂第4版(2003・南江堂)』▽『吉田勉編著、藤森泰ほか著『基礎からの生化学』(2003・学文社)』▽『奥恒行ほか編、石橋源次ほか著『栄養・健康化学シリーズ 生化学』(2003・南江堂)』▽『W・H・エリオットほか著、清水孝雄・工藤一郎訳『エリオット生化学・分子生物学』(2003・東京化学同人)』▽『林淳三監修、木元幸一ほか編著、倉沢新一ほか著『生化学――人体の構造と機能』(2003・建帛社)』▽『猪飼篤著『なっとくする生化学』(2003・講談社)』 [参照項目] | | | | | | | | | | | | | | | | | | | | | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
A group of algae. They are found mostly in freshwa...
In a broader sense, it can include the democratic...
A device that is placed directly against the ear t...
A volcano on the south shore of Lake Toya in sout...
Another name for the Tsutsugi moth of the family ...
...the science that discusses the effect of elect...
1840‐1912 British female doctor. Born in Hastings....
...the general term for a cone-shaped volcano and...
A clan named after the place names such as Ikeda-...
…The total length of the building is 515 feet (ab...
An unfinished work by German composer J.S. Bach (1...
...The term derives from the Hebrew word hasid (p...
A collection of haiku poems from the early Edo pe...
Generally speaking, political consciousness refer...
… [Takanuki Motokatsu] [Cultural Assets] The temp...