Decimal - decimal

Japanese: 小数 - しょうすう
Decimal - decimal

One tenth of 1 is expressed as 0.1, one tenth of that is 0.01, one tenth of that is 0.001, and so on. These are considered as units, and numbers smaller than 1 are expressed as, for example,
0.1×4+0.01×3+0.001×5
When expressed as 0.435, it is called a decimal. In this case, the dot written between the 0 and the 4 is called the decimal point. Also, in the decimal 0.435, the 4 is the first decimal place, and the 3 and 5 are the second and third decimal places, respectively. The sum of an integer and a decimal, for example, 2 + 0.435, is written as 2.435. Such a number is called a mixed decimal.

Decimals can be thought of as an extension of the base-10 numeration system to numbers smaller than 1. Thus, arithmetic operations with decimals can be thought of in the same way as arithmetic operations with integers. Addition can be done by adding each digit of the decimal, for example, 0.435 + 0.321 = 0.756. However, when the sum of numbers with the same digit exceeds 10, for example, 0.06 + 0.05 = 0.11, there is a carryover to the higher digit. Subtraction is done in the same way. For multiplication, for example, 0.43 x 0.026, first calculate 43 x 26 = 1118 without considering the decimal point, then find the sum of the numbers below the decimal point of the multiplier and multiplicand, which is 5, and place the decimal point so that the number of digits below the decimal point in the product matches this. In this case, the result is 0.43 x 0.026 = 0.01118. For example, in division, 0.2451÷0.43, multiply the divisor 0.43 by 100 to make it an integer, and also multiply the multiplicand by 100 to get 24.51, then calculate 24.51÷43. In this calculation, 2451÷43, which does not include a decimal point, is calculated to get 57, and the decimal point is determined from the dividend 24.51 to 0.57. In other words, 0.2451÷0.43=0.57. Similarly, in division, 0.2477÷0.43, 2477÷43 gives a quotient of 57 and a remainder of 26, but the decimal point of the quotient is 0.57 as before, and the remainder is 0.0026 from the original dividend 0.2477.

Decimals can be expressed as fractions. 0.1 = 1/10, 0.01 = 1/100, ... so 0.435 = 435/1000. Conversely, fractions can be expressed as decimals. When a fraction is converted to an irreducible fraction, if the denominator is a product of powers of 2 and 5, it becomes a finite decimal (7/80 = 7/(2 4 × 5) = 0.0875), but if the denominator contains factors other than 2 or 5, it becomes an infinite decimal (infinite decimal). For example, 1/7 is 0.142857142857..., which is an infinite repetition of 142857. This is expressed as 0.4285, with the repeating part (called a repeating node) surrounded by dots. Also, 19/55 = 0.34545... = 0.3. A decimal that repeats the same digits endlessly like this is called a repeating decimal. When a fraction is expressed as a decimal, it becomes either a finite decimal or a repeating decimal. Irrational numbers can also be expressed as decimals, but in that case they become infinite decimals that do not repeat.

The decimals discussed so far are called decimal decimals, which express one-tenth of one as 0.1. In contrast to this, binary decimals can be considered, which express half of one as 0.1. It is said that sexagesimal decimals were invented in ancient Babylonia.

[Tatsuro Miwa]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

1の10分の1を0.1、その10分の1を0.01、さらにその10分の1を0.001、……のように表し、それらを単位と考えて、1より小さい数を、たとえば、
  0.1×4+0.01×3+0.001×5
を0.435のように表したとき、これを小数という。このとき、0と4の間に書いた点を小数点という。また、小数0.435で、4は小数第1位の数字、3、5はそれぞれ小数第2位、第3位の数字である。整数と小数の和、たとえば、2+0.435は2.435のように書く。このような数を帯小数という。

 小数は、十進位取り記数法(じっしんくらいどりきすうほう)を1より小さいほうへ広げたものといえる。そこで、小数の四則計算は、整数の四則計算と同じように考えてできる。加法は、0.435+0.321=0.756のように、小数の各位ごとに足せばよい。ただし、0.06+0.05=0.11のように、同じ位の数の和が10を超すときは、上の位に繰り上がりがある。減法も同じようにする。乗法、たとえば、0.43×0.026では、まず、小数点を考えないで43×26=1118を計算し、次に、乗数、被乗数の小数点より下にある数字の数の和5を求め、積の小数点より下の数字の数がそれと一致するように、小数点を打つ。この場合は、0.43×0.026=0.01118となる。除法、たとえば、0.2451÷0.43では、除数0.43を100倍して整数にするとともに、被乗数も100倍して24.51とし、24.51÷43を計算すればよい。この計算では小数点を含まない2451÷43を計算して57を求め、小数点を、被除数24.51から0.57のように決める。つまり、0.2451÷0.43=0.57である。また、0.2477÷0.43では、同じように、2477÷43から商57、余り26を得るが、商の小数点は、前と同じようにして0.57、余りのほうは、初めの被除数0.2477から、0.0026となる。

 小数は分数に表すことができる。0.1=1/10、0.01=1/100、……で、0.435=435/1000となる。逆に、分数は小数に表すことができる。分数を既約分数に直したとき、分母が2、5の累乗の積であれば、7/80=7/(24×5)=0.0875のように、有限で終わる小数(有限小数)になるが、分母が2、5以外の因数を含んでいると、限りなく続く小数(無限小数)になる。たとえば1/7では0.142857142857……と、142857を無限に繰り返す。これを0.4285のように、繰り返す部分(循環節という)を点で挟んで表す。また、19/55=0.34545……=0.3となる。このように、どこまでも同じ数字を繰り返す小数を循環小数という。分数を小数に表すと、有限小数か循環小数のどちらかになる。無理数も小数に表すことができるが、そのときは、循環しない無限小数になる。

 これまで述べてきた小数は、1の10分の1を0.1のように表したもので、十進小数という。これに対して、1の2分の1を0.1のように表した二進小数が考えられる。古代バビロニアでは、六十進小数が考えられていたといわれる。

[三輪辰郎]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Minority Shareholders' Rights

>>:  Waterworks - waterworks

Recommend

Lucca (English spelling)

Lucca is the capital of the province of Lucca in t...

Battle of Ypres - Battle of Ypres

…Intermediate raw materials for chemical weapons ...

Accademia della Crusca (English spelling)

…It disappeared with his death in 1530, but was r...

Agkand pottery - Agkand pottery

...The addition of plasticity also made it possib...

Lepiota rhacodes (English spelling) Lepiotarhacodes

…[Rokuya Imaseki]. . … *Some of the terminology t...

Sedum stahlii (English spelling) Sedumstahlii

… [Hiroshi Yuasa]. … *Some of the terminology tha...

Oral contraceptive

…Also called oral contraceptives. A pill containi...

Barong Tagalog (English spelling)

A formal jacket worn by men in the Philippines. It...

Jukebox - Jukebox (English spelling)

A device that stores many records inside and auto...

Cadenza (English spelling) cadenza (Italian)

Musical term. (1) Harmonic cadence. There are thr...

Ise Ondo

A folk song from Ise City, Mie Prefecture. This i...

《Ki-soku Taigi》

…He passed the imperial examination in 1825, but ...

Labor and Industry - Labor and Industry

This is the official journal of the labor organiza...

Inter-War Period

It refers to the 20 years between the end of Worl...

Llanos, F.de (English spelling) LlanosFde

... The Middle Ages in Spain continued until the ...