Heavy chemical industry

Japanese: 重化学工業 - じゅうかがくこうぎょう
Heavy chemical industry

In general, labor-intensive industries (food, textiles, wood products, furniture, leather, etc.) are called light industries, while capital-intensive industries (iron and steel, non-ferrous metals, chemicals, etc.) and technology-intensive industries (general machinery, electrical machinery, transport machinery, precision machinery, etc.) are called heavy industries or heavy chemical industries.

[Shinichi Tonomura]

Development process

The development of capitalist production begins with light industry, and producer and capital goods develop into heavy industry or heavy chemical industry as independent industries. Industrialization that began in the UK was led by light industry, especially the textile industry, and the growing demand for textile machinery, steam engines, railways, and ships led to the rapid development of heavy industry, such as the steel and coal industries. The Bessemer converter (mid-19th century), invented in the UK, and the by-product recovery coke oven (1881), invented in Germany, promoted the mass production of steel and the development of the chemical industry, and the industrial structure was centered on coal, steel, and chemicals (inorganic chemistry), and also gave rise to huge monopolies (conglomerates) with organic connections in the production process, mainly in Germany and the US. In the 20th century, the electrical and electronics industries, the transportation machinery industries such as automobiles and aircraft, and the petrochemical industry (organic chemistry) grew rapidly, especially in connection with the military and consumer durable goods industries. Mass production systems were realized by combining automation and computer control, and this significantly advanced the industrial structure of developed countries in Europe and the United States.

[Shinichi Tonomura]

The development of heavy chemical industries in Japan

The milestone in the establishment of Japan's heavy and chemical industries was the start of operations of the government-run Yahata Steel Works (1901), but it was not until after World War I that self-sufficiency in industries such as steel, shipbuilding, machinery, and chemicals increased. After the Manchurian Incident in 1931 (Showa 6), heavy and chemical industries showed rapid development, supported by increased military spending, and in the five years up to 1936, production values ​​increased for metals (4.6 times), machinery (5.7 times), and chemicals (2.6 times), and the heavy and chemical industrialization rate reached 57%, on par with Europe and the United States, and new zaibatsu (business conglomerates) also rose to prominence, but the total mobilization of materials for military demand during the Pacific War led to the exhaustion of the national economy, and defeat came with the collapse of all industrial production.

After the war, Japan's heavy chemical industry restarted with a "priority production system" that placed emphasis on increasing coal and steel production, and the promotion of the chemical fertilizer industry to overcome the food crisis. In particular, the "Korean special demand" played a major role in economic recovery, and based on the recovery of the coal, steel, and chemical industries and the recovery of the consumer goods production sector such as food and clothing, a series of mass production machinery industries, such as sewing machines, bicycles, cameras, and watches, grew, and the Japanese economy recovered to prewar levels by 1955 (Showa 30).

The "high growth" policy after 1956 was a full-scale heavy and chemical industrialization policy for the Japanese economy, and its main features were the active introduction of technology, the development of large corporations through public investment, taxation, finance, and foreign currency allocation, and the aim to become a processing trade-based nation in order to secure raw materials. All of these were accompanied by technological innovations, such as the appearance of mass-produced durable consumer goods with high versatility (various home appliances, automobiles, etc.), the introduction of new products (synthetic resins, synthetic fibers, and their products), the conversion of production technology (for example, the introduction of strip mills in the steel rolling sector and LD converters (pure oxygen-blown converters) in the steelmaking sector), the conversion of raw materials (rapid development of petrochemicals, i.e., the cutting off of coal mines), and the enlargement of production facilities (enlargement of equipment in steel and petrochemicals, the creation of factories exclusively for passenger cars), and so on. As "investment begets investment," private capital investment was initially centered on material-based industrial sectors such as steel and chemicals, but gradually the weight shifted to assembly-based mechanical industries. The core of the machinery industry was the automobile industry, which was joined by the home appliance industry with electronics at its core, and this spread to small and medium-sized subcontractors in the parts industry. The international environment of "trade liberalization" followed by "capital liberalization" in the 1960s led to "rationalization investment" that achieved significant cost reductions and quality improvements. The Japanese economy overcame the 1965 recession, when the supply-demand gap became apparent, by expanding exports. It then shifted to an export-led economy and made further large-scale capital investments. The export ratio of textiles and miscellaneous goods, which accounted for the majority of exports in the 1950s, dropped sharply in the late 1960s, and exports of heavy chemical industry products to the United States and developing countries that had begun to industrialize soared. In particular, in the late 1970s, exports of machinery, mainly technology-intensive high-added-value products, increased sharply, and trade friction with the United States shifted from textiles to steel and home appliances.

[Shinichi Tonomura]

Current Features

The 1973 oil crisis dealt a serious blow to the energy-intensive material industries (petrochemicals, iron and steel, non-ferrous metals), forcing the petrochemical industry to make structural improvements, including major facility disposals. The steel industry weathered the steel recession by developing the world's most energy-efficient steelmaking technology, but is being overtaken by cheaper Korean products in both domestic and overseas markets. Material-based industries such as chemicals and steel face challenges such as changing over to high-tech chemical industries related to semiconductors, new ceramics, and biotechnology, and shifting from iron and aluminum to "light, thin, short, and small" material production such as magnetic materials and carbon fiber. On the other hand, the machinery industry is generally doing well, except for shipbuilding, with the development and supply of computers, industrial robots, office equipment, NC and MC machine tools, and various other devices and systems accelerating, and in terms of exports, it has taken over a corner of the former big three (automobiles, steel, and shipbuilding) exports.

In the 1980s, the heavy chemical industry, faced with a high yen and recession, was forced to make its second restructuring (rationalization of personnel and reduction of excess capacity) following the oil crisis. During the bubble economy from 1988 onwards, private capital investment, personal consumption and housing investment led domestic demand, and the heavy chemical industry seemed to temporarily recover, but after the bubble burst in the 1990s, it was forced into a slump once again. In this environment, emphasis was placed on continued rationalization and restructuring, and on management strategies that took into account overseas markets, particularly the Asian market as a whole, and companies in each industry are actively promoting the establishment of local production systems overseas. Economic cooperation is also being carried out in the form of technical assistance and technology transfer through engineering projects, etc.

However, it is clear that heavy and chemical industries continue to be the driving force behind the Japanese economy, as they have always been, supporting the "soft" economy and strengthening its foundations. There is no room for "hollowing out." The use of advanced technology is progressing in all fields, from steel, machinery, heavy electrical equipment, and even shipbuilding. The issue is how to develop independent technology and deploy new products and new businesses that utilize it, and how to lead and contribute to the world, including in environmental and recycling businesses.

[Shinichi Tonomura]

"The Changing Japanese Industry" by Hiroshi Takeuchi and Yoshiaki Enomoto (1980, Toyo Keizai Shinposha) " The Petrochemical Industry at a Turning Point" by Tokuji Watanabe and Koji Saeki (Iwanami Shinsho)

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

重工業ともいう。一般に、労働集約型の工業(食料品・繊維・木材製品・家具・皮革など)を軽工業とよぶのに対し、資本集約型(鉄鋼・非鉄・化学など)、技術集約型(一般機械・電気機械・輸送機械・精密機械など)の工業を重工業ないし重化学工業とよぶ。

[殿村晋一]

展開過程

資本主義的生産の発展は軽工業に始まり、生産財・資本財が独立の工業として重工業ないし重化学工業を発展させる。イギリスに始まった工業化は、繊維工業を中心とする軽工業が主導し、繊維機械や蒸気機関、鉄道・船舶への需要の伸びが鉄鋼業や石炭業など重工業を急激に発展させた。イギリスで発明されたベッセマー転炉(19世紀中葉)と、ドイツで発明された副産物回収式コークス炉(1881)は、鋼の大量生産と化学工業の発展を促し、石炭・鉄鋼・化学(無機化学)を軸に産業構造の重化学工業化が進んだほか、ドイツ、アメリカを中心に生産過程の有機的なつながりをもつ巨大独占体(コンツェルン)を誕生させた。20世紀に入ると、電気・電機工業、自動車・航空機など輸送機械工業、さらに石油化学工業(有機化学)が、とくに軍需工業や耐久消費財工業との関連で急成長し、オートメーションとコンピュータ制御の結合による大量生産体制を実現し、欧米先進国の産業構造を著しく高度化させた。

[殿村晋一]

日本における重化学工業の発展

日本の重化学工業成立の画期は、官営八幡(やはた)製鉄所の操業開始(1901)であるが、鉄鋼・造船・機械・化学などの産業分野での自給率が高まるのは第一次世界大戦後のことである。1931年(昭和6)の満州事変以後、軍事費の増大に支えられて、重化学工業は急激な発展をみせ、36年までの5年間に、金属(4.6倍)、機械(5.7倍)、化学(2.6倍)と生産額を伸ばし、重化学工業化率も欧米並みの57%に達し、新興財閥も台頭したが、太平洋戦争期の軍需への物資の総動員は国民経済の疲弊を招き、工業生産全体の壊滅とともに敗戦を迎えた。

 戦後日本の重化学工業の再出発は、石炭と鉄鋼の生産増強に重点を置く「傾斜生産方式」と、食糧危機打開のための化学肥料工業の振興であった。とくに「朝鮮特需」は経済復興に大きな役割を演じ、石炭・鉄鋼・化学工業の立ち直りと、食品・衣料などの消費財生産部門の回復を基調に、ミシン、自転車、カメラ、時計など一連の量産機械工業が成長し、日本経済は1955年(昭和30)には戦前水準に復活した。

 1956年以降の「高度成長」政策は、まさに日本経済の本格的な重化学工業化政策であり、積極的な技術導入、公共投資・税制・金融・外貨割当てなどによる巨大企業の育成、原料資源確保のために加工貿易立国を目ざした点などが最大の特徴である。汎用(はんよう)性の高い量産型耐久消費財(各種の家電製品、自動車など)や新製品(合成樹脂・合成繊維とその製品)の登場、生産技術の転換(たとえば、鉄鋼圧延部門へのストリップ・ミル、製鋼部門へのLD転炉=純酸素吹転炉の導入)、原料転換(石油化学の急展開=炭鉱の切捨て)、生産設備の大型化(鉄鋼・石油化学における装置の大型化、乗用車専用工場の創設)など、いずれも技術革新を伴うものだけに、新規の大型設備投資が急展開した。「投資が投資をよぶ」なかで、民間設備投資は、当初、鉄鋼・化学など素材型工業部門を中心としていたが、しだいに組立て加工型の機械工業にその比重が移った。機械工業の中心は自動車工業であり、エレクトロニクスを中核とした家電産業がこれに加わり、各種部品工業としての下請中小企業にも波及してゆくことになる。1960年代の「貿易自由化」から「資本自由化」という国際環境が、「合理化投資」によって、大幅なコストダウンと品質改善を達成させ、需給ギャップが表面化した1965年不況を輸出の拡大によって乗り切った日本経済は、その後、輸出主導型経済に転換し、さらに大型の設備投資を展開した。50年代に輸出の過半を占めていた繊維・雑貨などの輸出比率が60年代後半から急激に低下し、重化学工業製品の輸出がアメリカや工業化の始まった発展途上国向けに急上昇し、とりわけ70年代後半には技術集約型の高付加価値商品を中心とする機械類の輸出が急増し、対米貿易摩擦も繊維から鉄鋼・家電へと局面をかえた。

[殿村晋一]

現段階の特徴

1973年「石油危機」はエネルギー多消費型の素材産業(石油化学、鉄鋼、非鉄金属)に深刻な打撃を与え、石油化学工業は大幅な設備処理を含む構造改善を余儀なくされた。鉄鋼業界は、世界一の省エネ製鋼技術の開発によって、鉄鋼不況を乗り切ってきたが、内外市場で安価な韓国製品などの追い上げを受けている。化学・鉄鋼など素材型産業は、半導体工業、ニューセラミックス、バイオテクノロジーなどと関連するハイテク化学工業への脱皮とか、鉄・アルミなどから磁性材料・炭素繊維のような「軽薄短小」型素材生産への移行が課題となっている。一方、機械工業は、造船以外は全般に好調で、コンピュータ、産業用ロボット、OA用事務機、NC・MC工作機械のほか、各種の機器やシステムの開発・供給が加速化しており、輸出面でもかつての輸出御三家(自動車、鉄鋼、造船)の一角を造船にかわって占めるようになっている。

 1980年代、円高不況に直面した重化学工業は、石油危機時代に次いで二度目の構造調整(要員の合理化・過剰設備の削減)を余儀なくされた。88年以降のバブル経済期、民間設備投資、個人消費、住宅投資が内需を主導し、重化学工業は一時的に活況を取り戻したかにみえたが、90年代、バブル崩壊後はまたもや低迷を余儀なくされている。こうしたなかで、合理化・リストラの継続、海外市場、とりわけアジア市場全体を視野に入れた経営戦略が重視され、各業界各社とも海外現地生産体制の確立を積極的に推進している。経済協力も技術援助やエンジニアリング事業等による技術移転を伴う形で行われている。

 しかし、重化学工業は、これまでと同じく、日本経済の牽引(けんいん)役であり、経済の「ソフト化」を支え、その基盤を強化する役割を担っていることは明確である。「空洞化」はありえない。鉄鋼、機械、重電機器、さらに造船においても、先端技術の活用はどの分野でも進んでいる。問題は、自主技術の開発とそれを生かした新製品・新事業の展開であり、環境・リサイクル事業等を含めていかに世界をリードし、貢献できるか、という点である。

[殿村晋一]

『竹内宏・榎本善昭著『転換する日本産業』(1980・東洋経済新報社)』『渡辺徳二・佐伯康治著『転機に立つ石油化学工業』(岩波新書)』

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Potassium bromide

>>:  Freedom of Assembly

Recommend

Uspenskii, Gleb Ivanovich

Born: October 25, 1843 in Tula Died April 6, 1902....

Negoro group

A group of warrior monks from Negoro-ji Temple in ...

Gang - Gang (English spelling) gang

It means a group of people who work together, and...

Tragopan (English: Tragopan)

Tragopan is a general term for five bird species i...

Fujio Egami

Biochemist. Born in Tokyo on November 21, 1910. G...

Yokote [city] - Yokote

A city in the southeastern part of Akita Prefectur...

Quenching - Yakiire (English spelling)

This is the most basic heat treatment technique fo...

La cantatrice chauve (English spelling)

…Born in Slatina, Romania, to a Romanian father a...

Sir Henry Bessemer

British inventor. He contributed to the industria...

Anthonis Mor van Dashorst

Dutch portrait painter from 1517 to 1575. Born in ...

Movie art - eiga bijutsu

A general term for all art involved in film produc...

zurla

...The dance is generally a round dance called ko...

Chloral

trichloroacetaldehyde. C 2 HCl 3 O (147.39). CCl ...

Epsilon-aminocaproic acid

...(2) Drugs that inhibit enhanced fibrinolysis W...