The question of what happens when a mathematical object (such as a point) or physical phenomenon described in one coordinate system is viewed in another coordinate system is often of fundamental importance in academics. For example, if the coordinates of a point P on a plane are expressed as ( x , y ) in one coordinate system and ( x ', y ') in another, if we consider x and y as functions of x ' and y ', then x and y can be written as x = f ( x ', y ') and y = g ( x ', y '), respectively. This rewrites the point P described in coordinates ( x , y ) in another coordinate system ( x ', y '). This is generally called a coordinate transformation, and the above equation is called the equation for coordinate transformation. This can also be said to be determining the relationship between the coordinates determined by two different coordinate systems when the same object is described in two different coordinate systems. In particular, in Euclidean space, a coordinate transformation between two Cartesian coordinate systems that share the same origin is called an orthogonal transformation. For example, in the Cartesian coordinate systems O- xy and O - x'y ', when the x- axis and x' -axis intersect at an angle of θ degrees in the positive direction, the two coordinates ( x , y ) and ( x ', y ') of the same point P are related by the orthogonal transformation formulas x = x'cos θ- y'sin θ, y = x'sin θ+ y'cos θ. Here, the distance from the origin O remains unchanged by the orthogonal transformation. Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information |
ある座標系で記述された数学的対象 (たとえば点) や物理現象を,別の座標系でみたらどうなるかという問題は,学問的にしばしば基本的な重要性をもつ。たとえば平面上の点 P の座標が,一つの座標系では (x,y) で,別の座標系では (x',y') で表わされているとき,x および y を,x' および y' の関数と考えれば,x ,y はそれぞれ x=f(x',y') ,y=g(x',y') と書ける。これは座標 (x,y) で記述された点 P を,別の座標 (x',y') で記述しなおすわけで,このようなことを一般に座標変換といい,上述の関係式を座標変換の式という。これはまた,同一の対象が2種類の座標系で記述されているとき,それら2つの座標系によって定まる座標の間の関係を定めることと言い換えてもよい。また,特にユークリッド空間内で,原点を共有する2つの直交座標系の間の座標変換を直交変換という。たとえば直交座標系 O-xy ,O-x'y' において,x 軸および x' 軸が正の方向に関して θ 度で交わっているとき,同一の点 P の2つの座標 (x,y) および (x',y') は x=x' cos θ-y' sin θ ,y=x' sin θ+y' cos θ という直交変換の式で関係づけられる。ここで原点 O からの距離は,直交変換によって不変である。
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報 |
<<: Zahir sect - Zahir is (English spelling) Ẓāhirīyah
>>: Coordinates - Zahyo (English) coordinates
...It was only after the Sino-Japanese War and th...
...A general term for chemicals for testing and r...
...They dig a horizontal hole about 1m deep into ...
〘 noun 〙 Construction and other facilities to make...
After the Second World War, Renato Guttuso (1912-...
…The word tourism can refer to tourist behavior o...
Born: February 19, 1841, Tortosa [Died] August 19,...
...The Ruṣāfa district was formed around the mili...
...Fukuoka Mitsugu is played by Nakayama Bunshich...
A gas particle surrounded by liquid is called a b...
…Originally a term referring to Japanese macaques...
…Tapioca flakes, made by slicing the tubers and d...
...The Karawamage and Tatehiyogo styles of the ea...
The name of the tuning of the common koto. Tuned t...
...The endpapers should always be printed vertica...