Random variable

Japanese: 確率変数 - かくりつへんすう
Random variable

When there is a variable X that can take on various values ​​and the probability of each value being taken is fixed, X is called a random variable. For example, if the number that comes up when a dice is rolled is taken as X, then X is an integer between 1 and 6, and the probability of any value being taken is 1/6, so X is a random variable. Similarly, when buying a lottery ticket, if the amount of winnings is taken as X, then X is also a random variable. If you lose, X is 0, and if you win, the value of X is determined by the rank, and the probability of each case is fixed.

The possible values ​​of the random variable X are x 1 , x 2 , …, and if the probability that X is x i is p i , then p 1 +p 2 + …=1. This type of random variable is called discrete. In contrast, a random variable that can take any value in a certain interval I (which can be an infinite interval) is called continuous. In more detail, if a function f(x) that is continuous in interval I is

and for any interval J in I, the probability that the value of X belongs to J is

When X is given by, we call X a continuous random variable. In measure-theoretic probability theory, random variables are defined in a general form, including discrete and continuous types. In this case, the random variable X should be called a function rather than a variable. In other words, a measurable function defined in a sample space with a given probability measure is called a random variable.

[Shigeru Furuya]

[Reference] | Probability

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

いろいろの値をとりうる変数Xがあって、それぞれの値をとる確率が決まっているときXを確率変数という。たとえば、さいころを投げたとき出る目の数をXと置けば、Xは1から6までの整数のどれかであり、どの値をとる確率も1/6であるからXは確率変数である。また宝くじを買ったとき、当せん金額をXとするとXは確率変数である。はずれた場合はXは0であり、当せんした場合は等級によってXの値は決まり、しかも、各場合の確率は決まっているからである。

 確率変数Xのとりうる値がx1、x2、……であって、Xがxiである確率をpiとすればp1+p2+……=1である。このような確率変数を離散型という。これに対して、ある区間I(無限区間でもよい)のどの値もとりうるような確率変数を連続型という。詳しくいえば、区間Iで連続な関数f(x)が

を満たし、Iに含まれる任意の区間Jに対して、Xの値がJに属する確率が

で与えられるとき、Xを連続型の確率変数というのである。測度論的確率論では離散型および連続型を含む一般的な形で確率変数が定義される。この場合、確率変数Xは変数というよりむしろ関数というべきものである。すなわち、確率測度が与えられている標本空間で定義された可測関数のことを確率変数というのである。

[古屋 茂]

[参照項目] | 確率

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Theory of Probability

>>:  Probability distribution - Kakuribu-mpu

Recommend

Suga Scratching - Suga Scratching

A term used in Japanese music. It is used in vario...

Small Flower - Chiisakihana

The autobiography of the French saint Thérèse de L...

Dialectics - dialectic English

A method of understanding one thing as the unity ...

Ashikaga Ietoki

Year of birth: Year of birth and death unknown. A ...

Efferent nerve fibers

...For example, cats have 13 pairs of thoracic ne...

Professor Unrath - The End of a Tyrant

...It is also known for making Marlene Dietrich, ...

Podium - Endan

〘 noun 〙 A place that is one step higher than the ...

Officer - Richo

A book that records the office system of the Edo S...

Dried sardines - Hoshika

Also written as 'Han-iwashi'. A fish fert...

Oshizushi - Oshizushi

This type of sushi is made by putting sushi rice ...

Kokufu [town] - Kokufu

An old town in Iwami County, occupying the Fukuro ...

Eiger [mountain] - Eiger

A mountain in the Bernese Oberland mountain range ...

Ambrosian Chant - Ambrosian Chant

…So-called art music was probably dominated by mu...

Oochidome - Oochidome

A small perennial plant of the Umbelliferae famil...

Gene Frequency - Idensihind

The proportion of each allele present in the gene ...