When a random variable X is given, for any interval I, the probability Φ(I)=P(X∈I) that the value of X belongs to I is determined. This Φ is called the probability distribution of X, or simply the probability distribution. Among the probability distributions, the binomial distribution, the Poisson distribution, and the normal distribution are particularly important. Please see the respective items for more information on these. In at most a countable set A = {a 1 , a 2 , …} Below are some examples of probability distributions. (1) Uniform distribution When the random variable X has a finite number of values and the probability of each value being taken is equal, that is, when P(X = ai ) = 1/n (i = 1, 2 , ..., n), where a1 , a2, ..., an are distinct real numbers, the probability distribution of X is called a discrete uniform distribution. (2) Hypergeometric distribution When r balls are drawn from a bag containing n red balls and N-n black balls, if the number of red balls contained therein is X, the probability distribution of X is given by the following equation.
(3) Pascal distribution/geometric distribution Let p be the probability that an event E occurs in a trial. If we repeat this trial independently and denote by Y the number of times that event E does not occur before it has occurred r times, then the probability distribution of Y is P(Y=k)= r-1+k C k q k p r (k=0,1,2,……) where q=1-p. (4) Negative binomial distribution In the Pascal distribution, r was a positive integer. If r is a positive real number α, The above examples (1) to (4) are discrete distributions. Here are some examples of continuous distributions: (5) For a uniform distribution a < b, the probability density is (6) Cauchy distribution: Probability density is (7) Exponential distribution Probability density is f(x)=(1/2)e -|x| (8) Gamma distribution: λ>0,α>0, the probability density is (9) Log-normal distribution When the distribution of the random variable X is normal distribution N(m,σ 2 ), the distribution of the random variable Y= ex is called log-normal distribution. The probability density is given by the following formula.
(10) χ2 distribution, t distribution, F distribution χ2 distribution is read as chi-square distribution. For these distributions, see the section on sampling distribution. In the gamma distribution in (8) above, if λ = n/2 and α = 1/2, where n is a positive integer, then this becomes a χ2 distribution with n degrees of freedom. [Shigeru Furuya] Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
確率変数Xが与えられると、任意の区間Iに対して、Xの値がIに属する確率Φ(I)=P(X∈I)が決まる。このΦをXの確率分布、または単に確率分布という。確率分布のうちでとくに重要なものは二項分布、ポアソン分布、正規分布である。これらについてはそれぞれの項目をみられたい。 たかだか可算集合A={a1,a2,……}において 以下、確率分布の例をあげる。 (1)一様分布 確率変数Xのとる値が有限個であって、どの値をとる確率も等しいとき、すなわち、a1、a2、……、anを相異なる実数として、P(X=ai)=1/n(i=1,2,……,n)のとき、Xの確率分布を離散型の一様分布という。 (2)超幾何分布 赤球がn個、黒球がN-n個入っている袋の中からr個の球を取り出したとき、そのなかに含まれている赤球の個数をXとすると、Xの確率分布は次式で与えられる。
(3)パスカル分布・幾何分布 ある試行において事象Eのおこる確率をpとする。この試行を独立に繰り返すことにして、事象Eがr回おこるまでにEがおこらなかった回数をYで表すと、Yの確率分布は、q=1-pとして (4)負の二項分布 前記のパスカル分布においてrは正の整数であった。rを正の実数αとした場合 前記の例(1)~(4)は離散分布である。次に連続分布の例をあげる。 (5)一様分布a<bとして、確率密度が (6)コーシー分布 確率密度が (7)指数分布 確率密度が (8)ガンマ分布 λ>0,α>0として、確率密度が (9)対数正規分布 確率変数Xの分布が正規分布N(m,σ2)であるとき、確率変数Y=exの分布を対数正規分布という。確率密度は次の式で与えられる。
(10)χ2分布、t分布、F分布 χ2分布はカイ二乗分布と読む。これらの分布については標本分布の項をみられたい。 なお、前記(8)のガンマ分布において、nを正の整数としてλ=n/2、α=1/2と置いたものは自由度nのχ2分布である。 [古屋 茂] 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
>>: Stochastic differential equations
Concept Palpitations is a general term for the sym...
Generally, it means investigating the credit stat...
In China, Chinese characters have been used from t...
… There are more than a dozen species of sardines...
SO 3 (80.06). It is produced by reacting sulfur d...
A folk art form. A type of deer dance. A refined l...
…[Yamanaka Futoshi]. … *Some of the terminology t...
Just before his death at the age of 70 in 1966, C...
Generally, it refers to the head of the samurai g...
This is a ritual dance performed by women only af...
...The groundwater table in the area falls within...
It is translated as "slogan". Etymologi...
... After Udayana, the desire for strict definiti...
…He traveled to Europe from May 1884 to September...
...However, as time went on, inscriptions written...