Dirichlet problem

Japanese: Dirichlet problem(英語表記)Dirichletproblem
Dirichlet problem

… In addition, the problem of finding a solution to Laplace 's equation on a domain D in three-dimensional Euclidean space that satisfies u = φ …(2) or ∂ u /∂ n = φ …(3) on ∂ D , where φ is a function defined on the boundary ∂ D of D, is also a boundary value problem with boundary conditions (2) or (3) (∂ u /∂ n represents the differential coefficient of the solution in the outward normal direction of ∂ D ) . When the boundary condition is given by (2), it is called the Dirichlet problem, and when it is given by (3), it is called the Neumann problem. Problems that find a solution by specifying the asymptotic behavior of the solution as it approaches the boundary infinitesimally are also called boundary value problems. …

From [Harmonic Functions]

…Based on this fact, the theory of two-dimensional harmonic functions is an important chapter in functional theory. Among the boundary value problems related to Laplace's partial differential equation, the following is called the Dirichlet problem. Given a function f on the boundary ∂ D of a domain D , we find a harmonic function u of D that coincides with f . …

From [Potential Theory]

…Gauss's contributions are particularly great. One of the subjects of potential theory is the Dirichlet problem, which is a problem of finding a function that is harmonics in a given domain and coincides with a given function on the boundary. …

*Some of the terminology that refers to the "Dirichlet problem" is listed below.

Source | Heibonsha World Encyclopedia 2nd Edition | Information

Japanese:

… また,三次元ユークリッド空間内の領域D上のラプラス方程式,において,φをDの境界∂D上で定義された関数として,∂D上で, u=φ ……(2) あるいは, ∂u/∂n=φ ……(3) を満たす解を求める問題は,やはり(2),あるいは(3)を境界条件とする境界値問題である(∂u/∂nは∂Dの外向き法線方向への解の微分係数を表す)。境界条件が(2)で与えられているとき,これをディリクレ問題Dirichlet problem,(3)で与えられているとき,ノイマン問題Neumann problemという。 なお,境界に限りなく近づくときの解の漸近的挙動を指定して解を求める問題も,やはり境界値問題と呼ばれる。…

【調和関数】より

…この事実に基づいて,二次元の調和関数の理論は関数論の重要な1章をなしている。 ラプラス偏微分方程式に関する境界値問題のうち,次のものをディリクレ問題Dirichlet problemという。領域Dの境界∂Dに関数fを与えたとき,そこでfと一致するようなDの調和関数uを求める。…

【ポテンシャル論】より

…とくにガウスの功績は大きい。 ポテンシャル論の対象の一つとして,ディリクレ問題Dirichlet problemがある。これは,与えられた領域で調和で,境界で与えられた関数と一致するものを求める問題である。…

※「Dirichlet problem」について言及している用語解説の一部を掲載しています。

出典|株式会社平凡社世界大百科事典 第2版について | 情報

<<:  dirlik

>>:  Dirhinus hesperidum (English spelling) Dirhinushesperidum

Recommend

Equipartition law of energy

This law states that 1/2 kT ( k is the Boltzmann c...

Mindaugas; Mindowe

[Birth] Around 12:00 [Died] 1263 King of Lithuania...

Rhodoxeralf

…The name Terra Rossa comes from the Italian word...

Cantharellus

...A mushroom (illustration) of the family Chante...

Resonance

When an external force that oscillates back and f...

Bargello Museum - Museo Nazionale del Bargello (English name)

A national art museum in Florence, Italy. Its coll...

retention time

…However, as the field of fine chemistry is now a...

Metallized Paper Capacitor

A type of capacitor (electrical storage device) u...

Hippocampus kuda (English spelling) Hippocampuskuda

…[Isao Hanyu]. … *Some of the terminology that me...

Fixed point pressure method

… Special methods are used to determine the absol...

Kitarufa - Kitarufa

...It is also said that the Greek astronomer Hipp...

Naraya Ichiemon - Naraya Ichiemon

Year of birth: Year of birth and death unknown. Th...

Ondake - Ondake

A clastic cone located in the eastern part of Fuku...

Spark discharge - Hibanahoden

An electrical discharge that occurs instantaneous...

Yoo Gil-choon

Year of death: September 30, 1914 Year of birth: C...