An electron tube for generating X-rays. It has a cathode that generates electrons and an anticathode that receives the electron current. The electrons are accelerated by high voltage and collide with the anticathode to emit X-rays. There are two types of X-rays: continuous X-rays, which have a continuous spectrum and are generated when the energy of electrons is converted when they collide with the anticathode, and characteristic X-rays, which consist of a characteristic line spectrum or a part of it, emitted from the anticathode material when the electrons in the atoms of the anticathode are disturbed by the accelerated electrons. X-ray tubes can be broadly divided into ion X-ray tubes (also called gas X-ray tubes), which have been used since the discovery of Roentgen in 1895, and electron X-ray tubes (also called Coolidge tubes or thermionic X-ray tubes), which were invented by Coolidge of the General Electric Company in the United States in 1913. The principle of ion X-ray tubes is that when the discharge tube is depressurized to about 0.1 Torr (a pressure of 0.1 mm of mercury column) and discharged, a small amount of ions remaining in the tube are accelerated and collide with the cathode, which emits high-speed electrons. These electrons collide with the anticathode and generate X-rays. However, delicate adjustment of the degree of vacuum is required to keep the wavelength (hardness) of the X-rays constant, and the intensity and wavelength of the X-rays cannot be changed separately, so this type of tube is no longer used much. An electronic X-ray tube heats a tungsten cathode filament in a high vacuum to create a thermionic current, which is then collided directly with the anticathode, or anode, to generate X-rays. Tungsten is often used as the anode material for continuous X-rays, while iron, copper, molybdenum, and silver are often used for specific X-rays. The electron accelerating voltage is 30 to 100 kilovolts, and the accelerating voltage is further increased to increase the penetration. At this time, only 1% of the electron energy is converted into X-rays, with the remainder becoming heat, so a cooling method appropriate to the X-ray output dose is used. Small fixed anode X-ray tubes for dental use are cooled by dissipating heat through a copper anode into insulating oil. Most have a focal spot size of 0.1 to 1.0 mm. Large rotating anode X-ray tubes for circulatory diagnosis and CT scanners use an external rotating magnetic field to rotate a disk-shaped target at high speeds of 3,000 to 9,000 revolutions per minute to prevent heat buildup. For high output, some have been developed that use liquid metal for lubrication instead of ball bearings to reduce noise. The focal spot size is 0.1 to 2 mm. For analytical use, the spectral characteristics of X-rays are an issue, and various metals are used for the target depending on the purpose, but most have a grounded anode and are forced-cooled. For non-destructive measurement, particular attention is paid to the stability of the X-ray output. Special X-ray tubes include secondary X-ray tubes (also called fluorescent X-ray tubes) that generate strong secondary electrons, and microfocus X-ray tubes with a focal spot radius of 0.01 millimeters or less. [Michinori Iwata] [Reference] | | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
X線を発生させるための電子管。電子を発生させる陰極と、電子流を受け止める対陰極を備え、電子を高電圧で加速し、これを対陰極に衝突させてX線を出す仕組みになっている。X線には、対陰極に電子が衝突するとき電子エネルギーが変換されて発生し、連続スペクトルをもつ連続X線と、対陰極の原子内にある電子が加速電子によってかき乱されて、対陰極物質から出る固有な線スペクトルまたはその一部で構成される固有X線とがある。 X線管は、1895年レントゲンの発見以来使われたイオンX線管(ガスX線管ともいう)と、1913年にアメリカのゼネラル・エレクトリック社のクーリッジが考案した電子X線管(クーリッジ管、熱電子X線管ともいう)とに大別できる。 イオンX線管の原理は、放電管を0.1トル(水銀柱0.1ミリメートルの圧力)程度に減圧して放電させると、管内に残った少量のイオンが加速され陰極に衝突し、陰極から高速の電子が放射される。この電子が対陰極に衝突し、X線を発生する。しかし、X線の波長(硬さ)を一定に保つのに真空度の微妙な調整が必要なうえ、X線の強度と波長を別々に変えることのできない欠点のため、あまり使われなくなった。 電子X線管は高真空中のタングステン陰極フィラメントを加熱し、熱電子流をつくり、これを直接対陰極、つまり陽極に衝突させてX線を発生させる。陽極物質は、連続X線の場合はタングステン、固有X線の場合には鉄、銅、モリブデン、銀などが多く用いられている。電子の加速電圧は30~100キロボルトで、透過度をあげたいときは加速電圧をさらにあげている。この際、電子のエネルギーはわずか1%しかX線に変換されず、残りは熱になるため、X線の出力線量に応じた冷却法が用いられている。 歯科用などの小型の固定陽極X線管では銅製の陽極体を通して熱を絶縁油に逃がし冷却している。焦点サイズはほとんどが0.1~1.0ミリメートル。循環器診断用やCTスキャナなどの大型の回転陽極X線管は、円板状のターゲットを外部からの回転磁界により毎分3000~9000回転と高速回転させて熱上昇を抑えている。大出力用には消音のためにボールベアリングのかわりに潤滑用に液体金属を用いたものも開発されている。焦点サイズは0.1~2ミリメートル。分析用はX線のスペクトル特性が問題とされ、ターゲットには使用目的に応じて種々の金属が用いられるが、ほとんどは陽極を接地して強制冷却している。非破壊測定用はとくにX線出力の安定度に配慮されている。 なお、特殊X線管として、二次電子を強く発生する二次X線管(蛍光X線管ともいう)、焦点の半径が0.01ミリメートル以下という微小焦点X線管などがある。 [岩田倫典] [参照項目] | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: X-ray technician - X-ray technician
What is the disease? The pleura is the membrane t...
During the Muromachi Shogunate period from 1344 to...
...It usually lives on the sandy and muddy bottom...
...Head and body length 30-35cm. Three species ar...
…Nowadays, flight plans for domestic flights with...
Crisp vegetables are pickled in vinegar with vari...
When classifying religions according to the numbe...
It is an insecticide specially designed to contro...
…Here is one impressive scene involving hands fro...
It is also written as "banbon". It is th...
?-? A military commander from the Sengoku to Oda-...
...The American Yorktown (about 20,000 tons), Was...
A former town in Oda County, southwest of Okayama ...
A baby turtle of the family Trachemys native to Am...
This is the diary of Fujiwara no Yorinaga, the Mi...