Lagrange function - Lagrange's function

Japanese: ラグランジュ関数 - らぐらんじゅかんすう(英語表記)Lagrange's function
Lagrange function - Lagrange's function

A quantity that represents the mechanical characteristics of a physical system and determines its motion as a function of coordinates and their time derivatives. It was introduced by the French physicist and mathematician Lagrange. The equation of motion based on this function is called the Lagrangian equation, and its content is equivalent to Newton's equation of motion. If the Lagrangian function is L, it is defined as L=TU, where T is the kinetic energy of the system and U is the potential energy. When L and the initial conditions are given, the entire motion of the system can be described, so the form of mechanics starting from this is called the Lagrangian form, and it is the basic system of analytical mechanics.

Not only in the case of Newtonian mechanics, but also in the case of the motion of a charged particle in an electromagnetic field and the theory of relativity, the Lagrangian form can be used to write the equations of motion, and it is considered to be a highly general framework. If the generalized coordinates that uniquely determine the position of a system with degrees of freedom f are (q 1 , q 2 , ……, q f ), then L is this coordinate and its time derivative

and, more generally, time t. Hamilton's principle, which gives the motion of a dynamical system, is a variational principle for the time integral of L, and by performing variations in generalized coordinates we obtain the following Lagrange equation:


This is the equation of motion for generalized coordinates, and its form does not change even if a coordinate transformation is performed.

[Shinobu Nagata]

[Reference] | Analytical Mechanics | Hamilton's Principle

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

座標とその時間微分の関数で、ある物理系の力学的特性を表し、その運動を規定する量。フランスの物理学者・数学者ラグランジュが導入した。この関数に基づく運動方程式をラグランジュ方程式といい、その内容はニュートンの運動方程式と同等である。ラグランジュ関数をLとすると、系の運動エネルギーTとポテンシャルエネルギーUによりL=T-Uと定義される。Lと初期条件が与えられると系の全運動が記述されるので、これから出発する力学の形式をラグランジュ形式とよび、解析力学の基本的な体系となっている。

 ニュートン力学の場合のみならず、電磁場中での荷電粒子の運動や相対論の場合の運動方程式もラグランジュ形式に書くことができ、一般性の高い枠組みであると考えられる。自由度fの系の位置を一義的に定める一般化座標を(q1,q2,……,qf)とすると、Lはこの座標とその時間微分

および、より一般的には時間tによって表される。力学系の運動を与えるハミルトンの原理はLの時間積分に対する変分原理で、一般化座標で変分を行うことにより次のラグランジュ方程式を得る。


これは一般化座標に対する運動方程式であり、その形は座標変換をしても変わらない。

[永田 忍]

[参照項目] | 解析力学 | ハミルトンの原理

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Lagrangian equilibrium points - Lagrangian equilibrium points

>>:  Comte de Joseph Louis Lagrange

Recommend

Uchi no Tokubun - Uchi no Tokubun

…Also written as uchitoku. Abbreviation of uchi n...

Recovery room

Immediately after surgery, patients do not fully w...

Gastrointestinal Floatation Test

…Under the Criminal Code, a fetus is considered a...

Yamazaki Naomasa

Year of death: July 26, 1929 (Showa 4) Year of bir...

Student Social Sciences Association - Student Social Sciences Association

A nationwide organization of social thought resea...

Le Tarn (English spelling)

A tributary on the right bank of the Garonne River...

Kanba Falls

...There is a public bath carved into the natural...

Okichi Izumi - Okichi Izumi

…It grows in runoff water in the Shikoku and Kyus...

Quail (Japanese Quail) - Common quail

A bird of the Phasianidae family (illustration, il...

Primary battery - ichijidenchi (English spelling) primary battery

This refers to a battery that cannot be recharged...

Genshin Udagawa

1770 * -1835 * A Dutch scholar and doctor in the ...

Charles II (le Mauvais)

…The revolt was spontaneous, but came under the l...

Oyodo River

The largest river in Miyazaki Prefecture. A first...

Warbler Finch

...They dig ovules from cactus flowers and eat th...

High speed drying ink

A general term for inks that dry in a very short t...