Lagrange function - Lagrange's function

Japanese: ラグランジュ関数 - らぐらんじゅかんすう(英語表記)Lagrange's function
Lagrange function - Lagrange's function

A quantity that represents the mechanical characteristics of a physical system and determines its motion as a function of coordinates and their time derivatives. It was introduced by the French physicist and mathematician Lagrange. The equation of motion based on this function is called the Lagrangian equation, and its content is equivalent to Newton's equation of motion. If the Lagrangian function is L, it is defined as L=TU, where T is the kinetic energy of the system and U is the potential energy. When L and the initial conditions are given, the entire motion of the system can be described, so the form of mechanics starting from this is called the Lagrangian form, and it is the basic system of analytical mechanics.

Not only in the case of Newtonian mechanics, but also in the case of the motion of a charged particle in an electromagnetic field and the theory of relativity, the Lagrangian form can be used to write the equations of motion, and it is considered to be a highly general framework. If the generalized coordinates that uniquely determine the position of a system with degrees of freedom f are (q 1 , q 2 , ……, q f ), then L is this coordinate and its time derivative

and, more generally, time t. Hamilton's principle, which gives the motion of a dynamical system, is a variational principle for the time integral of L, and by performing variations in generalized coordinates we obtain the following Lagrange equation:


This is the equation of motion for generalized coordinates, and its form does not change even if a coordinate transformation is performed.

[Shinobu Nagata]

[Reference] | Analytical Mechanics | Hamilton's Principle

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

座標とその時間微分の関数で、ある物理系の力学的特性を表し、その運動を規定する量。フランスの物理学者・数学者ラグランジュが導入した。この関数に基づく運動方程式をラグランジュ方程式といい、その内容はニュートンの運動方程式と同等である。ラグランジュ関数をLとすると、系の運動エネルギーTとポテンシャルエネルギーUによりL=T-Uと定義される。Lと初期条件が与えられると系の全運動が記述されるので、これから出発する力学の形式をラグランジュ形式とよび、解析力学の基本的な体系となっている。

 ニュートン力学の場合のみならず、電磁場中での荷電粒子の運動や相対論の場合の運動方程式もラグランジュ形式に書くことができ、一般性の高い枠組みであると考えられる。自由度fの系の位置を一義的に定める一般化座標を(q1,q2,……,qf)とすると、Lはこの座標とその時間微分

および、より一般的には時間tによって表される。力学系の運動を与えるハミルトンの原理はLの時間積分に対する変分原理で、一般化座標で変分を行うことにより次のラグランジュ方程式を得る。


これは一般化座標に対する運動方程式であり、その形は座標変換をしても変わらない。

[永田 忍]

[参照項目] | 解析力学 | ハミルトンの原理

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Lagrangian equilibrium points - Lagrangian equilibrium points

>>:  Comte de Joseph Louis Lagrange

Recommend

Rudolf Ludwig Mössbauer

German physicist. Born in Munich. Earned his doct...

Feldspar - Feldspar

It is an aluminosilicate mineral, belonging to th...

Cutting ability - Kirinou

In Noh, it is the Noh play that is performed at th...

Westminster Confession

A Presbyterian confession of faith established by ...

Grabmann, Martin

Born: 1875. Winterzofen [Died] 1949. Eichstätt Ger...

Onidaiko - Demon drum

A folk performing art performed at spring festival...

Algae - Sorui (English spelling)

A group of plants that includes a diverse taxonom...

French, DC (English spelling) FrenchDC

… [Engraving] In the early period, wooden portrai...

Artemisia schmidtiana (English spelling) Artemisiaschmidtiana

…[Hiroshi Aramata]. … *Some of the terminology th...

Dispersion - Bunsan

〘noun〙① To divide and scatter what was in one plac...

Tomé Açu (English spelling)

A city in the northeast of the state of Para in no...

jaque

…It is widely worn by men, women, and children, a...

Jayadeva - Jayadeva (English spelling)

Date of birth and death unknown. An Indian lyric ...

Taurotragus derbianus (English spelling) Taurotragusderbianus

…[Yoshiharu Imaizumi]. … From [Antelope] …[Tadaak...

San-chao Bei-meng Hui-bian (English: San-chao Bei-mêng Hui-pien)

A book that records the beginning of negotiations ...