A group of plants that includes a diverse taxonomic group. Generally, algae refer to plants that grow in the sea or freshwater on land, but some grow in brackish water, wetlands, on ice and snow, and in hot springs, so their habitat is extremely wide. [Makoto Yoshizaki] Occurrence and characteristics of algaeIt is well known that the first living organisms on Earth appeared in the ancient ocean. In addition, in the geological timeline of the Earth, there is the Precambrian period (approximately 575 million years ago) before the Cambrian period of the Paleozoic Era, and a division called the Algonkian era was once created here. The name Algonkian comes from algae, meaning it was the age of algae. In fact, the oldest biological fossils known today are thought to be species of the blue-green algae phylum (approximately 2.7 billion years ago). As such, algae are a group of organisms with a much longer history than other groups of organisms, and therefore, in terms of morphology, they are extremely diverse, ranging from unicellular organisms without a true nucleus to unicellular organisms with a true nucleus and multicellular organisms. In other words, each stage of morphological evolution can be recognized in algae. The body structure of the evolved groups of algae (red algae, brown algae, and some green algae) may appear similar to that of land plants, but they do not have the three-part body structure of stem, leaf, and root that is prominent in many land plants. Even in algae that appear to have differentiation on the outside, the internal structure and function of each body part are not very different. Also, in terms of reproduction and reproduction, algae do not produce flowers because they reproduce by single-celled spores. For this reason, algae have been considered to be a member of the phyllophytes in terms of body structure, and a member of the cryptogams in terms of reproduction. By the way, when comparing algae with fungi that make up the kingdom Fungi, the two are distinguished in that "algae have photosynthetic pigments and are capable of carbon dioxide assimilation, while fungi do not." In other words, "algae have the ability to create an organic substance called sugar (glucose) from inorganic materials such as carbon dioxide (CO2 ) and water ( H2O ), while fungi do not." In other words, the difference between the two is autotrophy (autotrophy) and heterotrophy (heterotrophy). This difference is also the main difference that is first cited when distinguishing between plants and animals, so from this perspective alone, it can be said that fungi are closer to animals. Furthermore, with unicellular algae (such as Euglena and dinoflagellates), depending on the environmental conditions, the same individual can be colored and autotrophic, or it can become amoeboid and heterotrophic, making it difficult to determine whether it is a plant or an animal. Incidentally, in the case of red tides that cause damage to fish and shellfish, the damage is particularly severe when dinoflagellates, which are difficult to determine whether they are plants or animals, proliferate in large numbers. [Makoto Yoshizaki] Algae ClassificationThe photosynthetic pigments found in terrestrial plants are chlorophyll a, b, and carotenoids, but algae contain chlorophyll c and d, as well as a wider variety of carotenoids than terrestrial plants. Some algae also contain pigment proteins (phycobilins) called phycoerythrin (red algae pigment) and phycocyanin (blue algae pigment). However, these pigments are not uniformly contained in all algae species, and the mixture composition of the pigments contained varies depending on the group. In other words, differences in the pigments contained result in differences in the body color of the algae, as well as the chemical structure and physical properties of the polysaccharides contained in photosynthetic products and cell wall substances. Recently, as research has progressed, these differences have been elucidated in detail, and the classification of algae as a whole, which once focused mainly on morphological characteristics, has shifted to focus mainly on the differences in the pigments and polysaccharides contained. In addition, there is a phylum called lichens, which is a plant body formed by symbiosis between some algae and some fungi, but this is usually treated as an independent taxonomic group and is not included in algae. Furthermore, with the progress of research using electron microscopes, it has become clear that there are groups of algae that differ from conventional ones in terms of their ultramicroscopic structure (for example, the fine structure of flagella in spores and the arrangement of plastids within cells). What has been described so far is a classification based on purely botanical taxonomic criteria, such as the affinities and phylogenetic relationships with other plants and the mutual affinities among algae, but there are also traditionally used distinctions and names based on different viewpoints: (1) the distinction between freshwater algae and marine algae based on the differences in the water bodies they grow in, (2) the distinction between planktonic algae and benthic algae based on the differences in their underwater growth patterns, and (3) the distinction between unicellular algae and multicellular algae based on the differences in their body plan. [Makoto Yoshizaki] Unique EcologyAlgae grow in a wide range, and some species (such as Cyanidium caldarium) can grow in hot springs with temperatures of over 80°C, while other genera and species (such as Chlamydomonas nivalis) grow on snow and ice and attract attention. The former are collectively called hot-spring algae, and the latter are collectively called cryo algae. Some algae live by boring holes into calcareous objects such as shells (Conchocelis), while others deposit calcareous matter on or inside their bodies. The latter are collectively called calcareous algae, and some of them play an important role in forming coral reefs in tropical seas. This group includes genera and species of the Dasycladales order in the Chlorophyceae class and the Corallinaceae family in the Rhodophyceae class. Both of these ancestral fossils appeared frequently in the Paleozoic and Mesozoic eras, and it is believed that at that time there were many more genera and species distributed widely than exist today. Algal fossils from the Precambrian period are all single-celled blue-green algae that are considered to be anucleate or prokaryotic organisms, but both groups of calcareous algae have a eukaryote and their anatomy is quite evolved. Diatoms have hard siliceous shells, and haptophytes are covered with calcified scales. In areas where these algae proliferated in geological times, their fossils remain as diatomite. The bodies of algae that do not deposit lime or siliceous acid decay and decompose or disintegrate immediately when they die. For this reason, algae are an extremely interesting group of plants in terms of biological evolution, but to date no fossils that can be traced back to their ancestral forms have been found. Unicellular planktonic algae are found in all taxonomic groups except for Charophyceae and Phaeophyceae, and they grow in a wide and diverse range. Among them, a group of unicellular algae called Zooxanthera is thought to be closely related to planktonic algae. These live symbiotically inside the soft bodies of reef-building corals and the mantle membrane of Tridacna clams. It is thought that the many variations in the body colors of corals and Tridacna clams are deeply related to these symbiotic algae. In addition, Prochloron grows inside the bodies of colonial ascidians that grow in tropical and subtropical regions, and some genera and species of Chlorophyceae and Cyanobacteria live symbiotically with fungi to form lichens. [Makoto Yoshizaki] Algae propagation methodMany algae species have alternation of generations with asexual spores and sexual spores. However, since algae include many groups with different evolutionary stages, there are many reproductive stages that show gradual evolution from primitive forms, not just alternation of generations. In general, the life cycle of a plant is often divided into a vegetative stage (asexual generation) and a reproductive stage (sexual generation), but this division method is also applicable to unicellular organisms. For example, cell division in a unicellular alga to produce multiple individuals should be considered as a primitive form of reproduction rather than a simple division. Since the offspring produced by such cell division only have the same genetic factors, it is in the same category as vegetative propagation, asexual reproduction, or clone reproduction. In contrast, the reproduction method in which two spores from the same or different individuals unite to produce a single unit, which then germinates to produce a new individual, is called sexual reproduction. In this case, the individual or spore that combines is called a gamete, and the product of the combination is called a zygote. In sexual reproduction, the genetic factors of each gamete may not be identical, so the genetic factors of the zygote or new individual will also be slightly different from those of its parents. This is the phenomenon known as hybrid vigor or heterosis. In the reproduction methods of land plants, sexual reproduction is predominant, the difference between male and female gametes is clear, differentiation within the body is clear, the reproductive part arises in a part of the vegetative part, and after reproduction is completed, the reproductive part disappears, but the vegetative part survives and maintains a perennial lifespan. However, in algae, as mentioned above, there are sexual, vegetative and asexual reproductions, and even in the case of sexual reproduction, there are various changes in the shape of the gametes and the process of zygote formation. Looking at the reproduction of algae in general, vegetative and asexual reproductions are predominant in unicellular algae, and sexual reproduction occurs only rarely. In contrast, in multicellular algae, asexual and sexual reproductions are seen with equal frequency, and there is often a regular alternation of generations (although there are some groups where only sexual reproduction is seen). In addition, whether asexual or sexual, the shape of the reproductive spores can be divided into swarmer planospores that swim around with flagella and aplanospores that do not have flagella. In addition, sexual gametes can be divided into isogametes, which have no difference in shape when they unite (so-called male and female cannot be distinguished), and heterogametes, which have a clear difference in size. When this difference becomes even greater and the female becomes immobile, it becomes an egg. Reproductive spores are formed either at one time or after a certain interval. Those in which the individual disappears after reproduction is completed are called annuals, while those in which the differentiation between the vegetative and reproductive parts is somewhat clear and the vegetative part survives after reproduction is completed are called perennials. However, in the case of algae, even though they are perennial, most of them only live for 5 or 6 years or less, and there are no long life spans of several decades to several thousand years like terrestrial plants. In addition, reproductive spores of algae almost always grow into new individuals on their own after leaving the mother body. In land plants, the female gamete remains inside the mother body and unites with the male, is protected by the mother for a while, and then leaves the mother after growing to a certain size to become a new individual; however, this is extremely rare in algae. [Makoto Yoshizaki] Algal lineageAlthough the physical structure of algae is simpler than that of land plants, other plant phyla also show similar forms. Therefore, when considering phylogeny, the relationships are often considered from the viewpoint of pigments, chloroplast structure, and the structure of swarming cells (reproductive spores). The groups that have chlorophyll a and b (prasinophytes, green algae, and charophytes) are in a phylogenetic and evolutionary relationship with land plant phyla. However, the groups that have chlorophyll a and c, and the groups that have both chlorophyll a and phycobilin, remain in the water even today. Among algae, brown algae are considered to be the most evolved in terms of physical structure alone, and red algae are considered to be the most evolved in terms of reproduction alone. [Makoto Yoshizaki] "Seaweeds and Benthos" by Shinzaki Moritoshi et al. (1976, Tokai University Press)" ▽ "A Color Illustrated Guide to Japanese Seaweeds, Expanded Edition" by Segawa Muneyoshi (1977, Hoikusha)" ▽ "An Illustrated Guide to Japanese Freshwater Algae" edited by Hirose Hiroyuki and Yamagishi Takao (1977, Uchida Rokakuho)" ▽ "Methods of Research into Algae" edited by Nishizawa Kazutoshi and Chihara Mitsuo (1979, Kyoritsu Shuppan)" ▽ "The Mysteries of Seaweeds - The Path to Green" by Yokohama Yasutsugu (1982, Sanseido)" ▽ "Gakken Illustrated Guide to Living Things, Seaweeds" edited by Chihara Mitsuo (1983, Gakken) ※Instructor: Makoto Yoshizaki © Fukuko Aoki "> Major types of brown algae (1) [specimen illustrations] ※Instructors: Makoto Yoshizaki ©Fukuko Aoki ©Kanezo Otawa ©Shogakukan "> Major types of brown algae (2) [specimen illustrations and labels] ※Instructor: Makoto Yoshizaki ©Kenzo Otawa "> Major types of brown algae (3) [specimen illustrations] ※Instructor: Makoto Yoshizaki ©Kanezo Otawa ©Shogakukan "> Major types of red algae (1) [specimen illustrations and labels] ※Instructor: Makoto Yoshizaki ©Kanezo Otawa ©Shogakukan "> Major types of red algae (2) [specimen illustrations and labels] ※Instructors: Makoto Yoshizaki ©Tadaaki Ohkata ©Shogakukan "> Major types of green algae (specimen illustrations) © Shigeru Yoshizaki Algae life cycle (Ulva) © Shigeru Yoshizaki Algae life cycle (Kelp) © Shigeru Yoshizaki Algae life cycle (Algae) Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
多様な分類群を含む植物の一群。一般に藻類という場合、海中や陸上の淡水域に生育する植物をさすが、なかには、汽水、湿地、氷雪上、あるいは温泉中などに生ずるものもあり、生育域はきわめて広い。 [吉崎 誠] 藻類の発現と特徴地球上の最初の生物の発現場所は太古の海中であったことはよく知られている。また、地球の地質年代でみると、古生代カンブリア紀以前に先カンブリア時代(約5億7500万年以前)というのがあるが、かつて、ここにアルゴンキアンAlgonkian代という区分が設けられていた。このアルゴンキアンの名はalgaeに由来するもので、藻類の時代であったことを意味している。実際、現在知られている生物化石中の最古のものは、藍藻(らんそう)植物門の種と考えられている(およそ27億年前)。藻類は、このように、他の生物群よりもはるかに長い歴史をもつ生物群であるため、形態の面からみると、真核をもたない単細胞体から、真核をもつ単細胞体、多細胞体まであり、きわめて変化に富んでいる。つまり、藻類には、形態進化の各段階が認められるわけである。 藻類中で進化したグループ(紅藻類、褐藻類と、緑藻類の一部)の体制は、一見、陸上植物に似ているが、多くの陸上植物で著明である茎・葉・根という体部の三分化はない。たとえ、外見は分化があるようにみえる藻類の場合でも、内部構造やその働きはどの体部においても大差がない。また、藻類を繁殖・生殖法の面からみると、単細胞の胞子をもって行うため、いわゆる花をつくることはない。このため、藻類は体制の面からは葉状植物の仲間、生殖法の面からは隠花植物の仲間とされてきた。ちなみに、藻類と菌界を構成する菌類とを比較した場合、両者は、「光合成色素をもち、炭酸同化能力のあるのが藻類、その能力のないのが菌類」という点で区別される。視点をかえていうと、「二酸化炭素CO2と水H2Oという無機物を材料にして糖類(ブドウ糖)という有機物をつくりだす能力のあるのが藻類、その能力のないのが菌類」ということになる。つまり、両者の相違は、独立(自家)栄養と従属(他家)栄養にあるといえる。この相違は、植物と動物を区別する際にまずあげられる主要相違点でもあるから、この面だけでみると菌類は動物に近いともいえよう。なお、単細胞体の藻類(たとえばミドリムシ類とか渦鞭毛(うずべんもう)藻類の仲間)では、同一個体が環境条件によって、有色・独立栄養をする場合もあれば、アメーバ状の無色体になり、従属栄養をする場合もあり、植物か動物かの判定が混乱しているものもある。ちなみに、魚貝類に被害を与える赤潮の場合では、植物か動物かの判定がむずかしい渦鞭毛藻類が大繁殖しているときに、とくに被害が大きくなりやすい。 [吉崎 誠] 藻類の分類陸上植物でみられる光合成色素類はクロロフィルa・b、カロチノイドであるが、藻類体内には、さらにクロロフィルc・dのほか、陸上植物よりも多様なカロチノイドが含まれる。また、藻類には、フィコエリスリン(紅藻素)、フィコシアニン(藍藻素)という色素タンパク(フィコビリン)を含むものもある。しかし、これらの色素類は全藻種に一様に含まれるというわけではなく、グループによって含有色素類の混合組成に違いがある。つまり、含有色素類の差違によって、藻体の体色、さらには光合成生産物や細胞壁物質などの含有多糖類の化学構造や物理的性状などに相違が出るわけである。最近では、研究の進展とともにこれらの相違が詳しく解明されてきたので、かつては形態的特徴に主眼が置かれていた藻類全体としての分類は、含有色素類や含有多糖類の異同に主眼が置かれるように変わってきている。なお、一部の藻類と一部の菌類とが共生して植物体をつくる地衣植物門があるが、これは、通常、独立の分類群とし、藻類中には入れない慣習となっている。また、電子顕微鏡による研究の進展とともに、藻類の極微構造(たとえば、胞子にある鞭毛の微細構造とか、細胞内での色素体の配列状況など)には、従来とは相違するグループのあることもわかってきている。 これまで述べてきた内容は、他の植物との類縁・系統関係、藻類内での相互の類縁関係という純植物分類学的立場での分類であるが、これとは違う観点から、伝統的に慣用化されている区別、呼称がある。すなわち、(1)生育水域の相違による、淡水藻fresh water algaeと海藻marine algaeの別、(2)水中での生育様式の相違による、プランクトン藻planktonic algaeと定着藻benthic algaeの別、(3)体制の相違による、単細胞藻unicellular algaeと多細胞藻multicellular algaeの別などである。 [吉崎 誠] 特殊な生態藻類の生育域は広く、種類によっては、80℃以上もある温泉域に生育しうるものもあれば(イデユコゴメCyanidium caldariumなど)、氷雪上に繁殖して人目をひく属種もある(コナミドリムシChlamydomonas nivalisなど)。前者の場合は温泉藻hot-spring algaeと総称され、後者の場合は氷雪藻cryo algaeと総称される。 藻類には、貝殻など石灰質の物の中に穿孔(せんこう)して生活するものもあれば(コンコセリスConchocelis)、石灰質を体表あるいは体内に沈着する属種もある。後者は一括して石灰藻calcareous algaeとよばれるが、なかには、熱帯海域のサンゴ礁構成にあたって重要な役割を果たすものもある。この仲間には、緑藻綱のカサノリ目Dasycladalesの属種と紅藻綱のサンゴモ科Corallinaceaeの属種とがある。これらの祖先型の化石は、ともに古生代、中生代に多く出現しており、当時は、現存種よりもはるかに多い属種が広範囲に分布していたと思われる。先カンブリア時代に出る藻類化石は、無核あるいは原核の生物とされる藍藻植物単細胞体ばかりであるが、両石灰藻のグループは、ともに真核をもち、その体制もかなり進化した形状を呈している。 珪藻(けいそう)は珪酸質の固い殻をもち、またハプト藻は石灰化した鱗片(りんぺん)で覆われている。地質時代に、これらの藻類が大繁殖していた地域では、これらの化石が珪藻土diatomiteとして残っている。石灰や珪酸を沈着しない藻類の体は、死ぬとただちに腐って分解してしまうか、崩壊してしまう。このため、藻類は生物進化のうえできわめて興味ある植物群であるが、祖先型がたどれる化石は、現在までのところ、まだみつかっていない。 単細胞性プランクトン藻類は、車軸藻綱と褐藻綱を除くすべての分類群にみられ、生育域は広く、多様である。なかでもプランクトン藻に近縁と思われるものにズーザンテラ(褐虫藻)Zooxantheraとよばれる単細胞藻群がある。これらは、造礁サンゴ虫の軟体部やシャコガイの外套(がいとう)膜の内部に共生している。サンゴ体やシャコガイの体色に変化が多いのは、この共生藻群と深くかかわっているとも考えられる。このほか、プロクロロンは、熱帯・亜熱帯に生育する群体ボヤの体内に生育しているし、緑藻綱と藍藻綱のいくつかの属種は、菌類と共生して地衣植物をつくる。 [吉崎 誠] 藻類の繁殖法藻類には無性胞子と有性胞子をもって世代交代を行う属種が多い。しかし、藻類には進化段階の違う多くのグループが含まれるため、世代交代だけではなく、原始型からしだいに進化を示す多くの繁殖段階が認められる。一般に、植物体の一生涯は、栄養段階(無性世代)と生殖段階(有性世代)に分ける生育区分法(生活環)がよく使われるが、単細胞体生物にあっても、こうした区分法は適用しうると考えられる。たとえば、単細胞藻体に細胞分裂がおこって複数個体になるのも、単なる分裂とみるよりも、むしろ生殖の原始型とみるべきであろう。こうした細胞分裂によって生ずる子孫は、同じ遺伝因子をもつものだけであるから、栄養繁殖vegetative propagation、または無性生殖asexual reproduction、あるいはクローンclone繁殖と同じ範疇(はんちゅう)にあることとなる。これに対し、同一個体、あるいは別々の個体から出た二つの胞子が合一してつくる合一体が、さらに発芽して新個体を生ずる繁殖法を有性生殖sexual reproductionという。この場合、合一する個体や胞子はともに配偶子gameteとよび、合一の結果できるものを接合子zygoteとよぶ。有性生殖にあっては、それぞれの配偶子がもつ遺伝因子は同一ではない場合もあるため、接合子、あるいは新個体がもつ遺伝因子も、その両親のとは多少違うこととなる。これが、いわゆる雑種強勢hybrid vigor, heterosisとよばれる現象である。 陸上植物の繁殖法では、有性生殖が優勢、雌雄配偶子の相違が明瞭(めいりょう)、体部中の分化が明瞭、栄養部の一部に生殖部が生じ、生殖終了後は生殖部は消失するが、栄養部は生き残って多年生の寿命を保つというのが普通である。しかし、藻類にあっては、前述のように有性生殖と栄養繁殖・無性生殖とがあり、有性生殖の場合でも、配偶子の形状や接合子の形成過程にはさまざまな変化がある。藻類の繁殖を大まかにみると、単細胞藻群では栄養繁殖・無性生殖が優勢で、有性生殖はまれにおこるだけである。これに対して多細胞藻群では、無性と有性の生殖が同頻度でみられ、規則正しい世代交代が行われる場合が多い(なかには有性生殖だけがみられるグループもある)。なお、無性であっても有性であっても、その生殖胞子の形状には鞭毛をもって泳ぎ回る遊走胞子swarmer planosporeと鞭毛をもたない不動胞子aplanosporeの別がある。また、有性の配偶子では、合一する両者に形状の差がない(いわゆる雌雄の区別がつかない)同型配偶子isogameteと、大小の差が明確である異型配偶子heterogameteとがある。この差がさらに大きくなり、雌性が不動になったのが卵である。生殖胞子の形成は、一時期におこるものと、一定の間を置いておこるものとがある。生殖を終了したあと個体が消失していくものを一年生annualとよび、栄養部と生殖部の分化がやや明瞭になり、生殖終了後も栄養部が生き残るものを多年生perennialとよんでいる。しかし、藻類の場合、多年生といっても、そのほとんどは5、6年以下の寿命で、陸上植物のように数十年から数千年という長い寿命のものはない。また、藻類の生殖胞子は、母体を離れたあと、自力で新個体に成長していく場合がほとんどである。陸上植物では、雌性配偶子は母体内にとどまったままで雄性と合一し、しばらくは母体の保護を受け、ある程度まで成長したあとに母体から離れ、新個体になることが多いが、藻類ではきわめてまれである。 [吉崎 誠] 藻類の系統藻類の体制は、陸上植物の体制に比べると簡単であるが、他の植物門のなかにも類似の形態を示すものがある。そのため、系統を考える場合には、色素、葉緑体構造、遊走細胞(生殖胞子)の構造などから類縁関係を考察することが多い。陸上の諸植物門と系統・進化関係にあるのは、クロロフィルaとbとをもつグループ(緑色植物のプラシノ藻、緑藻、車軸藻)である。しかし、クロロフィルaとcとをもつグループと、クロロフィルaとフィコビリンとをもにグループとは、現在も水中生活にとどまっている。藻類のなかで、体制面だけからみると、褐藻類がもっとも進化し、生殖面だけからみると、紅藻類がもっとも進化したグループと考えられる。 [吉崎 誠] 『新崎盛敏他著『海草・ベントス』(1976・東海大学出版会)』▽『瀬川宗吉著『原色日本海藻図鑑 増補版』(1977・保育社)』▽『広瀬弘幸・山岸高旺編『日本淡水藻図鑑』(1977・内田老鶴圃)』▽『西沢一俊・千原光雄編『藻類研究法』(1979・共立出版)』▽『横浜康継著『海藻の謎――緑への道』(1982・三省堂)』▽『千原光雄編『学研生物図鑑 海藻』(1983・学習研究社)』 ※指導:吉崎 誠©青木福子"> 褐藻植物のおもな種類(1)〔標本画〕 ※指導:吉崎 誠©青木福子 ©大多和鐘三 ©Shogakukan"> 褐藻植物のおもな種類(2)〔標本画・標… ※指導:吉崎 誠©大多和鐘三"> 褐藻植物のおもな種類(3)〔標本画〕 ※指導:吉崎 誠©大多和鐘三 ©Shogakukan"> 紅藻植物のおもな種類(1)〔標本画・標… ※指導:吉崎 誠©大多和鐘三 ©Shogakukan"> 紅藻植物のおもな種類(2)〔標本画・標… ※指導:吉崎 誠©大片忠明 ©Shogakukan"> 緑藻植物のおもな種類〔標本画〕 ©吉崎 茂"> 藻類の生活環(アオサ) ©吉崎 茂"> 藻類の生活環(コンブ) ©吉崎 茂"> 藻類の生活環(マクサ) 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
A town in Nakauonuma County in southern Niigata Pr...
Born January 27, 1948. Liberian politician and reb...
A Meiji-era private law scholar. Born in Matsue (...
A young boy who was made the leader of the Shimab...
This is leave taken by workers to care for family...
One of the indoor lighting devices used from aroun...
A general term for the canals around Birmingham in...
[noun] (suru) The act of carving new woodblocks an...
A village in Chiisagata County in central eastern ...
The lyric part of Noh. It is also called ji or ho...
…In the past, it was written as Kisai, and in the...
…Professor at the University of Munich (1861-65)....
…Only the foremost mast is square-sailed like a b...
... The older stage of the Danubian culture (Chil...
…Elamite beliefs were characterized above all by ...