Undetermined coefficient method - Miteikeisuuho

Japanese: 未定係数法 - みていけいすうほう
Undetermined coefficient method - Miteikeisuuho

When deriving a new equation from a given known equation or condition, the method of determining the unknown coefficients by setting the coefficients that appear in the equation as unknowns and using various mathematical principles is called the method of undetermined coefficients. Three application examples are shown below.

(1) Find the quotient and remainder when 2x ^3 -x ^2 +3x+1 is divided by x^ 2 -2x+3. Since both the quotient and remainder are linear expressions, if we write them as ax+b and cx+d, respectively, we get the following equation.

2x 3 -x 2 +3x+1
=( x2 -2x+3)(ax+b)+(cx+d)
Since this is an identity, the coefficients of like terms on the left and right are equal.

a=2, 2a-b=1, 3a-2b+c=3, 3b+d=1
Solving this system of equations,
a=2, b=3, c=3, d=-8
Therefore, the quotient is 2x+3 and the remainder is 3x-8.

(2) There is a cubic polynomial of x, and when x takes the values ​​-1, 0, 1, and 2, the values ​​of this polynomial are -1, 3, 5, and 11, respectively. Find this polynomial. If the polynomial you are looking for is f(x)=ax 3 +bx 2 +cx+d, then
f(-1)=-a+b-c+d=-1,
f(0)=d=3,
f(1)=a+b+c+d=5,
f(2)=8a+4b+2c+d=11
From these equations we get a=1, b=-1, c=2, d=3
The equation we are looking for is x 3 -x 2 +2x+3.

(3) Determine the values ​​of constants a, b, and c so that the following identity holds.

a(x-1)(x-2)+b(x-2)(x-3)
+c(x-3)(x-1)=4x 2 -13x+7
Since it is an identity, even if you substitute any number for x, the values ​​of both sides of the equation are the same. So, if you substitute 1, 2, and 3 for x, then 2b=-2, -c=-3, and 2a=4, respectively.
This gives us a = 2, b = -1, and c = 3.

[Yoshio Takeuchi]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

与えられた既知の式または条件から新しい式を導くとき、求めるべき式に現れる係数を未知数として設定し、種々の数学的原理を用いて、未知の係数を決定する方法を未定係数法という。以下三つの応用例を示す。

(1)2x3-x2+3x+1をx2-2x+3で割ったときの商と余りを求める。商と余りはいずれも一次式であるから、それぞれをax+b,cx+dと置くと、次の等式が得られる。

  2x3-x2+3x+1
   =(x2-2x+3)(ax+b)+(cx+d)
これは恒等式であるから、左右の同類項の係数は等しい。

  a=2, 2a-b=1, 3a-2b+c=3, 3b+d=1
この連立方程式を解いて、
  a=2, b=3, c=3, d=-8
を得る。したがって、商は2x+3で、余りは3x-8である。

(2)xの三次の整式があって、xが-1,0,1,2の値をとるとき、この式の値は、それぞれ、-1,3,5,11となる。この整式を求める。求める整式をf(x)=ax3+bx2+cx+dと置くと、
  f(-1)=-a+b-c+d=-1,
  f(0)=d=3,
  f(1)=a+b+c+d=5,
  f(2)=8a+4b+2c+d=11
が得られる。これらの方程式から
  a=1,b=-1,c=2,d=3
を得る。求める式はx3-x2+2x+3である。

(3)次の恒等式が成立するように定数a,b,cの値を求める。

  a(x-1)(x-2)+b(x-2)(x-3)
   +c(x-3)(x-1)=4x2-13x+7
恒等式であるから、xに任意の数を代入しても、両辺の式の値は等しい。そこでxにそれぞれ1,2,3を代入すると、それぞれ
  2b=-2,-c=-3,2a=4
が成り立つ。これからa=2,b=-1,c=3が得られる。

[竹内芳男]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  My Tho

>>:  Canal du Midi - Canal du Midi

Recommend

Yukan Matsui

Years of birth: unknown Years of birth and death: ...

Malta fever (English name) Maltafever

…It is a zoonotic disease caused by Brucella bact...

Key Claw Pinno - Key Claw Pinno

…Males are only 1/2 to 1/3 the size of females, h...

Hibiscus militaris (English spelling)

…[Yoshishige Tachibana]. … *Some of the terminolo...

Keratomalacia - Kakumakukankasho

A disease commonly seen in infants and young child...

Blackout curtain - ANTENMAKU

…It is made of black cotton and is mainly used fo...

Kamuro Mountains - Kamurosanchi

A mountain range that spans three prefectures: Mi...

Radioactivation Analysis

A method of bombarding a sample with neutrons or ...

Empire of Trebizond

The Byzantine emperor, named after the Byzantine n...

Gregorius IX (English spelling)

...The Inquisition, with its unique system and pu...

Cuban solenodon (English spelling) Solenodon cubanus; Cuban solenodon

Insectivore, Solenodontidae. Endemic to Cuba, Cent...

Kinnaird, M.

…It corresponds to the YMCA. It was formed in 187...

NATM - New Attack on Titan

...Steel arch supports have the advantage of bein...

Diego de San Francisco

Around 1575-? A Spanish Franciscan priest. He came...

Homotherium

…The ancestral Machairodus was widely distributed...