The extreme value problem dealt with in differential calculus involves finding the maximum or minimum value of a function f ( x1 , x2 , …, xn ) of n variables ( x1 , x2 , …, xn ) moving within a certain domain, whereas the calculus of variations involves considering problems like the following famous example (by J. Bernoulli in 1696) . Two points A =( x 0 , y 0 ), B =( x 1 , y 1 ), x 1 > x 0 , y 1 > y 0 in the perpendicular x - y plane are connected by a smooth curve y =( x ).When a ball is slid along this curve without friction, what is the curve that will reach point B in the shortest time? To express this mathematically, the velocity of the particle along the curve y = ( x ) is, In this way, the calculus of variations is used to solve problems of the form: Find ( x ) that minimizes a real-valued function I () of function ( x ).
Similarly, let G be a bounded region of two-dimensional space. Among the functions on the boundary of G such that ( x , y ) = g ( x , y ) (the given function), One method is to use Euler's equation to solve the calculus of variations problem, but there are also direct methods to solve the calculus of variations problem directly. In particular, it is often used to convert a differential equation into a variation problem with the Euler equation and solve it with the direct calculus of variations method. There is the Ritz method for finding an approximate solution using a direct method. To explain it in terms of the Poisson equation, take a continuously differentiable function ( x , y ) on G with boundary value (x, y ) = g ( x , y ), and set u ( x , y ) = ( x , y ) - w ( x , y ), then [Haruo Sunouchi] ©Shogakukan "> Calculus of variations (cycloid curve) Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
微分法で取り扱われる極値問題は、ある領域内を動くn個の変数(x1,x2,……,xn)の関数f(x1,x2,……,xn)の最大値、最小値を求めるのに対し、変分法では、次の有名な例(1696年、J・ベルヌーイによる)のような問題を考える。 垂直なx-y平面の二点A=(x0,y0),B=(x1,y1),x1>x0,y1>y0を滑らかな曲線y=(x)で結び、この曲線に沿って一つの球を摩擦を受けることなく滑り落とすとき、点Bへ最短時間で到達する曲線を求めよ。 これを数式で表すには、曲線y=(x)に沿っての粒子の速度は、 このように、関数(x)の実数値関数I()を最小にする(x)を求めよ、という形の問題を解くのが変分法である。
同様に、二次元空間の有界領域をGとし、Gの境界上で(x,y)=g(x,y)(与えられた関数)となる関数のうちで 変分法の問題をオイラーの方程式を用いて解くのも一つの方法であるが、変分法の問題を直接解く直接法もある。とくに、微分方程式をオイラー方程式としてもつ変分問題に直し、変分法の直接法で解くこともよく用いられる。 直接法で近似解を求めるのにリッツの方法がある。それをポアソンの方程式について説明をすると、境界値として(x,y)=g(x,y)となるG上の連続微分可能な関数(x,y)をとり、u(x,y)=(x,y)-w(x,y)と置くと、 [洲之内治男] ©Shogakukan"> 変分法(サイクロイド曲線) 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Condyloma flatus - Hempeikonjiro-ma
>>: Bian Wen-jin (English spelling)
Another name for Kawachi Province (eastern Osaka P...
〘noun〙 A permanent building established by Christi...
A representative Danish naturalist writer. Born t...
…In steels containing alloying elements such as m...
...The occurrence of leukemia and various cancers...
A cantilever is a beam with one end fixed and the ...
…The amount of tape used is not limited in advanc...
...From the Elizabethan period through to the rei...
→Neurorep anesthesia Source: Shogakukan Encyclope...
A plateau occupying the southern half of India. T...
[1] 〘 noun 〙① To make amends by ceasing a dispute....
A town in Aso County in northeastern Kumamoto Pref...
...A railway accident is an event that occurs tha...
See the Schema page. Source: ASCII.jp Digital Dic...
International Council for Science. An internationa...