There are two main types of forces that act between molecules. The first type is repulsive force, which is effective only at very short distances and decreases rapidly as the distance increases. This force is derived from the Pauli principle, and is called exchange repulsion because it occurs when molecules approach each other to a certain extent, causing overlapping of electron clouds and resulting in an exchange interaction of electrons. The essence of this force is the same as chemical bonding force, but the only difference is that it becomes a repulsive force between molecules whose valences are saturated, and becomes an attractive force when the valences are not saturated (atoms, free radicals, etc.). Because of this force, it takes a great deal of force to compress a substance beyond a certain extent. The second type is van der Waals force, or charge transfer force, which is an attractive force that is effective even at relatively long distances. Of these, van der Waals forces are further divided into orientation forces and inductive forces that act between polar molecules, and dispersion forces that act between all molecules, regardless of whether they are polar or non-polar. The charge transfer force is an attractive force acting between the electron donor D and the electron acceptor A, and corresponds to stabilization by resonance between the non-bonded structure D...A and the charge transfer structure D + -A - . As mentioned above, intermolecular forces consist of attractive forces that are quite effective even over long distances and exchange repulsive forces that only work at very short distances, so the potential energy is expressed in a form consisting of two terms, attractive and repulsive, but J. Lennard-Jones proposed the form -λr - m + μr - n , and usually, setting m = 6 and n = 12 gives good agreement with experiments. Lennard-Jones calculated the second virial coefficient B using the above potential and compared it with the experimental value (see [Other terminology] Lennard-Jones potential). In addition to this, measurements of the viscosity of gases and the cohesive energy of solids also provide information for determining the potential of intermolecular forces. Source: Morikita Publishing "Chemical Dictionary (2nd Edition)" Information about the Chemical Dictionary 2nd Edition |
分子間に作用する力で,大別して次の二つの種類がある.その第一は,かなりの近距離においてのみ有効で,距離が遠くなるにつれて急激に減少する斥力である.この力は,パウリの原理に由来するもので,分子がある程度以上近づいて電子雲の重なりが生じ,電子の交換相互作用が起こることによるものであるから,交換斥力とよばれる.この力の本質は化学結合力と同じであるが,原子価が飽和している分子の間では斥力となり,原子価が飽和していない場合(原子や遊離基など)には引力となることだけが違っている.この力があるために,物質をある程度以上圧縮するには非常な力を要する.第二は,比較的遠距離においても有効な引力である,ファンデルワールス力,電荷移動力がこれである.このうち,ファンデルワールス力はさらに,有極性分子間にはたらく配向力と誘起力,有極性・無極性を問わずすべての分子間にはたらく分散力に分けられる.また,電荷移動力は電子供与体Dと電子受容体Aとの間にはたらく引力で,非結合構造D…Aと電荷移動構造D+-A-との間の共鳴による安定化に相当する.上に述べたように,分子間力は遠距離でもかなり有効な引力とかなりの近距離でしかはたらかない交換斥力からなっているので,そのポテンシャルエネルギーは引力と斥力の二つの項からなる形で表されるが,J. Lennard-Jonesによって-λ r-m + μ r-nの形が提唱されており,通常,m = 6,n = 12とおくと実験との一致がよい.Lennard-Jonesは第二ビリアル係数Bを上記のポテンシャルを使って計算し,実験値と比較した([別用語参照]レナード・ジョーンズのポテンシャル).また,これ以外に気体の粘性率の測定や固体の凝集エネルギーなども,分子間力のポテンシャルを決定するための情報を与える. 出典 森北出版「化学辞典(第2版)」化学辞典 第2版について 情報 |
Protecting a nation's territorial integrity a...
...The Japanese silverfish Ctenolepisma villosa (...
It belongs to group 2 of the periodic table and i...
A sport in which two pairs of players hit a ball t...
Please see the "Gamma function" page. S...
Year of death: Bunmei 1.8.11 (September 16, 1469) ...
Sesamoid bones are small oval bones embedded in a...
…In the 19th century, with the industrial product...
Please see the "Foreign Exchange Fund Securi...
The word plasma is a Greek word meaning "a s...
What is the disease? Appendicitis is a disease in...
Under normal conditions, breathing is not consciou...
A general term for parasitic insects belonging to ...
...Specifically, beneficiary burdens are hardly u...
What kind of disease is it? ●Main symptoms and cou...