Inequality - Inequality

Japanese: 不等式 - ふとうしき
Inequality - Inequality

The symbols >, <, ≧, ≦ that show the relationship between numbers or expressions are called inequality signs, and expressions expressed using inequality signs are called inequalities. Inequalities are based on the relationship between real numbers. Therefore, when dealing with inequalities, we always consider them within the range of real numbers.

abab >0
a > b ⇔ On a number line, a is a point to the right of b , which is the basic meaning of the inequality sign (⇔ indicates a necessary and sufficient condition).

The basic property of inequality is
(1) If a > 0, b > 0, then ab > 0
If a < 0, b < 0, then a + b < 0
(2) If a > 0, b > 0 or a < 0, b < 0, then ab > 0
If a > 0, b < 0 or a < 0, b > 0 then ab < 0
(3) If ab and bc , then ac
(4) If ab , then a + cb + c , a - cb - c
(5) If a > b , c > 0, then ac > bc , a / c > b / c
If a > b , c < 0 then ac < bc , a / c < b / c
The method for solving inequalities is as follows: [1] In the case of linear inequalities, use basic properties to reduce the inequalities to the form x > a , xa , x < a , xa . For example, the solution to 3 x + 5 > 5 x + 1 is:
(3 x +5)-5 x -5>(5 x +1)-5 x -5 (basic property (4))
-2 x > -4, x <2 (basic property (5))
Thus we get x < 2 ( Figure A ).

[2] In the case of quadratic inequalities,
ax 2 + bx + c ⋛0 ( a > 0)
After rearranging the equation, consider the solution of ax 2 + bx + c = 0. Depending on the situation of this solution, it can be classified as shown in Table 1 .

[3] In the case of higher-order inequalities, factorize them and process them while considering the signs of the factors. For example,
The left side of the equation x 3 - 2 x 2 - 5 x + 6 > 0 can be factorized as ( x - 1)( x + 2)( x - 3). By analyzing the signs in Table 2 , the solution to the inequality is -2 < x < 1, 3 < x ( Figure D ).

[4] In the case of fractional inequalities, collect all the terms on one side, reduce them to a common denominator, and then consider the signs of the factors. For example,

Transposing this

The analysis of the signs of the factors in this last inequality is the same as in Example 2, and is shown in Table 2. Therefore, the solution is -2 < x < 1, 3 < x
( Figure D ).

[5] In addition to the above, there are various other inequalities, such as inequalities involving irrational expressions, and inequalities involving exponential functions, logarithmic functions, and trigonometric functions.

In solving inequalities, we find the set of possible values ​​that the letters in the inequality can take for the inequality to be true. In contrast, sometimes it is necessary to prove that the inequality holds identically for all combinations of letter values ​​that satisfy a given condition. For example,
a > 0, b > 0, then a 3b 3a 2 bab 2
To prove this,
a 3 + b 3 - a 2 b - ab 2
=( a + b )( a 2 - ab + b 2 - ab )
=( a + b )( a - b ) 2 ≧0
Similarly , a2 + b2 + c2ab + bc + ca
To prove this,
a 2 + b 2 + c 2 - ab - bc - ca = (1/2) {( a - b ) 2 + ( b - c ) 2 + ( c - a ) 2 }≧0
Such inequalities, which are valid regardless of the real values ​​(or positive real values) of the letters, are called absolute inequalities ( Table 3 ).

[Osamu Takenouchi]

Solutions to quadratic inequalities (Table 1)
©Shogakukan ">

Solutions to quadratic inequalities (Table 1)

Sign of (x-1)(x+2)(x-3) [Table 2]
©Shogakukan ">

The sign of (x-1)(x+2)(x-3) [...

Absolute inequalities (Table 3)
©Shogakukan ">

Absolute inequalities (Table 3)

Linear inequality (Figure A)
©Shogakukan ">

Linear inequality (Figure A)

Quadratic inequality (Figure B)
©Shogakukan ">

Quadratic inequality (Figure B)

Quadratic inequality (Figure C)
©Shogakukan ">

Quadratic inequality (Figure C)

Higher-order inequalities and fractional inequalities (Figure D)
©Shogakukan ">

Higher-order inequalities and fractional inequalities (Figure D)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

数や式の大小関係を示す記号>,<,≧,≦を不等号といい、不等号を用いて表した式を不等式という。不等式は、実数の大小関係が基本になっている。したがって、不等式を扱うときは、かならず実数の範囲内で考えることにする。

  abab>0
  ab ⇔ 数直線上ではabの右側の点
が、不等号の基本の意味である(⇔は必要十分条件であることを示す)。

 不等式の基本性質は
(1)a>0,b>0ならばab>0
   a<0,b<0ならばab<0
(2)a>0,b>0またはa<0,b<0ならばab>0
   a>0,b<0またはa<0,b>0ならば ab<0
(3)ab,bcならばac
(4)abならばacbc,acbc
(5)ab,c>0ならばacbc,a/cb/c
   ab,c<0ならばacbc,a/cb/c
 不等式の解法は
〔1〕一次不等式の場合、基本性質を利用して、xa,xa,xa,xaの形に帰着させる。たとえば、3x+5>5x+1の解は、
  (3x+5)-5x-5>(5x+1)-5x-5(基本性質(4))
  -2x>-4, x<2(基本性質(5))
こうしてx<2を得る(図A)。

〔2〕二次不等式の場合、
  ax2bxc⋛0 (a>0)
の形に整理してから、ax2bxc=0の解を考える。この解の状況によって、表1のように分類される。

〔3〕高次不等式の場合、因数分解して、因数の符号を考えて処理する。たとえば、
  x3-2x2-5x+6>0の左辺は(x-1)(x+2)(x-3)と因数分解される。表2の符号の分析により、不等式の解は
  -2<x<1, 3<xとなる(図D)。

〔4〕分数不等式の場合、すべての項を一辺に集めて通分し、因数の符号を考えて処理する。たとえば、

これを移項して

この最後の不等式の各因子の符号の分析は例2と同じく、表2のようになる。ゆえに、解は
  -2<x<1, 3<x
となる(図D)。

〔5〕このほか、無理式を含む不等式、指数関数、対数関数、三角関数を含む不等式など、さまざまな不等式がある。

 不等式の解法では、不等式が正しいために不等式の中に含まれる文字がとりうる値の集合を求めた。これに対して、与えられた条件を満たすすべての文字の値の組合せについて、不等式が恒等的に成立することの証明が必要となる場合もある。たとえば、
  a>0,b>0のときa3b3a2bab2
を証明するには、
  a3b3a2bab2
   =(ab)(a2abb2ab)
   =(ab)(ab)2≧0
同様に
  a2b2c2abbcca
を証明するには、
  a2b2c2abbcca=(1/2){(ab)2+(bc)2+(ca)2}≧0
このような、文字がどのような実数値(あるいは正の実数値)をとっても成立するものは、絶対不等式とよばれる(表3)。

[竹之内脩]

二次不等式の解〔表1〕
©Shogakukan">

二次不等式の解〔表1〕

(x-1)(x+2)(x-3)の符号〔表2〕
©Shogakukan">

(x-1)(x+2)(x-3)の符号〔…

絶対不等式〔表3〕
©Shogakukan">

絶対不等式〔表3〕

一次不等式〔図A〕
©Shogakukan">

一次不等式〔図A〕

二次不等式〔図B〕
©Shogakukan">

二次不等式〔図B〕

二次不等式〔図C〕
©Shogakukan">

二次不等式〔図C〕

高次不等式と分数不等式〔図D〕
©Shogakukan">

高次不等式と分数不等式〔図D〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Grape wine (Budoshu)

>>:  Real estate registration - Fudosantouki

Recommend

Certhidea olivacea (English spelling) Certhideaolivacea

...They dig ovules from cactus flowers and eat th...

Gender (English spelling)

A idiophone used in Indonesian gamelan ensemble mu...

Short-horned grasshopper - Short-horned grasshopper

An insect belonging to the family Acrididae in th...

Neo-Hindu (English spelling)

…On the other hand, Ramakrishna and Ramana Mahars...

Ballpoint pen - ball point pen

A type of writing instrument. The ink inside the ...

Cannary, MJ (English spelling)CannaryMJ

…A female hero of the American West. Her real nam...

Waterfall mouth - Takiguchi

[1] 〘Noun〙① The place where a waterfall falls. The...

Salt marsh - Salt marsh

...A plant that can grow on land containing salt....

Nagahama [city] - Nagahama

A city on the northeastern shore of Lake Biwa in S...

Inverted tooth - Soppa

Also called bucktooth. This is an improper bite co...

Oxya yezoensis (English spelling) Oxyayezoensis

…[Tokuji Chiba]. … *Some of the terminology that ...

Updike, John

Born March 18, 1932 in Reading, Pennsylvania [Died...

Can you cut it? Can you cut it?

...Ayu intestines and their salted fish. Those ma...

Oe no Koretoki

A man of letters in the mid-Heian period. He was ...

type II conditioning

...Therefore, conditioning can occur even if the ...