Incompleteness theorem

Japanese: 不完全性定理 - ふかんぜんせいていり
Incompleteness theorem
A system is said to be complete when it is possible to determine the truth or falsity of all propositions that can be formulated within that system. The incompleteness theorems state that if a formal system including natural number theory is consistent, then it is not complete (Gödel's First Incompleteness Theorem), and that if a formal system including natural number theory is consistent, then that consistency cannot be derived from within that system (Gödel's Second Incompleteness Theorem). It was announced by Gödel in 1931. Gödel proved the First Incompleteness Theorem under the assumption of omega-consistency, which is stronger than consistency, but later J.B. Rosser proved that the First Incompleteness Theorem holds even if omega-consistency is replaced with consistency, and so it has taken its current form.

Source : Heibonsha Encyclopedia About MyPedia Information

Japanese:
ある体系内で定式化できるあらゆる命題に対して,その真偽がすべて決定できるとき,その体系は完全といわれる。不完全性定理とは〈自然数論を含む形式的体系が無矛盾ならば,それは完全ではない〉(ゲーデルの第1不完全性定理),〈自然数論を含む形式的体系が無矛盾ならば,その無矛盾性をその体系内から導くことはできない〉(ゲーデルの第2不完全性定理)をいう。1931年ゲーデルが発表。ゲーデルは第1不完全性定理を無矛盾性よりも強いオメガ無矛盾という仮定のもとで証明したが,その後ロッサーJ.B.Rosserがオメガ無矛盾を無矛盾に置き換えても第1不完全性定理が成り立つことを証明し,現在の形となっている。

出典 株式会社平凡社百科事典マイペディアについて 情報

<<:  Kingdom of Buganda - Buganda Kingdom (English spelling) Buganda

>>:  Underemployment - underemployment

Recommend

Plains Wanderer - Plains Wanderer

A bird of the family Parasitidae in the order Grui...

Dilmun (English spelling)

An ancient place name believed to have been locate...

Miyama [town] - Miyama

An old town in Kitamuro District facing the Kumano...

Fishing season

It refers to the period suitable for catching use...

Indian Chintz

This refers to dyed fabric made in India on cotto...

Proteus bacteria - Proteus kin

A genus of gram-negative rods that are widely dist...

internal nares

…In the Paleozoic bony fishes known as the Lophop...

Temporal bone

…It is a rectangular dish-shaped bone connected b...

Biosphere -

The space on Earth where living organisms live. T...

Strange sights of the past and present - Kinkokikan

This is a collection of stories published by Bao&...

Kakiami (English spelling) lead net

A net that forms part of a fixed fishing net. It ...

Liepāja (English spelling)

A city in the Kurzeme region in western Latvia. Fa...

"Living Soldier" - Living Soldier

...After Kuroshima Denji's "Swirling Cro...

Chinese bamboo stand - Kawatake no dai

…There are two staircases on the east side and on...

Amud man

A Neanderthal (archaic man) from the late Pleistoc...