German mathematician. Born in Königsberg (now Kaliningrad, Russia), he studied at the University of Königsberg from 1880 to 1884. His friends at the university included Minkowski, and he also learned a great deal from Adolf Hurwitz (1859-1956), who was appointed as an assistant professor in 1884. His discussions on mathematics with Minkowski and Hurwitz had a great influence on him. After receiving his doctorate in 1885, he studied in Leipzig and Paris for a year, and returned to Japan in 1886 to become a private lecturer at his alma mater. Hurwitz moved to the University of Zurich in Switzerland in 1892, but he had been taught by Furwitz for eight years, and succeeded him as a professor at the University of Königsberg. In 1895, he was invited by F. Klein to become a professor at the University of Göttingen, where he spent the rest of his life. His achievements span all fields of mathematics, but can be broken down by decade as follows: From 1885 to 1893, he studied algebraic formalism, proving very generally that invariants are made up of a finite number of bases. The zero point theorem, one of the fundamental theorems in today's algebraic geometry, was also proven within this formalism. From 1894 to 1898, he studied algebraic number theory, completing the famous "Report on Number Theory" (1896), and solidifying the foundations of class field theory. From 1899 to 1903, he contributed to the foundations of geometry. His 1899 publication of " Grundlagen der Geometrie " (Foundations of Geometry) motivated 20th century mathematics to take a step towards abstraction, and was a groundbreaking work in the history of mathematical thought. At the Second International Congress of Mathematicians held in Paris in 1900, he gave a lecture titled "Problems of Mathematics," in which he posed 23 unsolved problems (Hilbert's problems). These problems, which cover a wide range of fields including algebra, geometry, and analysis, attracted the interest of mathematicians and provided a major impetus for the development of mathematics in the 20th century. From 1904 to 1912, he made contributions to analysis. He considered integral equations as infinite-dimensional simultaneous first-order equations, and established the foundations of today's Hilbert spaces while constructing infinite-order linear transformations and quadratic form theory. From 1913 to 1922, he studied theoretical physics in detail, and from 1922 onwards, he conducted research into the foundations of mathematics. Taking a formalist stance, he thoroughly investigated and studied the logic that governs mathematics. His works include Grundzüge der Theoretischen Logik (Foundations of Theoretical Logic) (1928, revised in 1948), co-authored with Wilhelm Ackermann (1896-1962), and Grundlagen der Mathematik I, II (1934, 1939), co-authored with Paul I. Bernays (1888-1977). [Kiyoshi Iseki, October 19, 2018] "Hilbert: The Great Peak of Modern Mathematics" by C. Reid, translated by Kenichi Iyanaga (1972, Iwanami Shoten/Iwanami Gendai Bunko) [References] | | | | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
ドイツの数学者。ケーニヒスベルク(現、ロシア領カリーニングラード)に生まれ、1880~1884年ケーニヒスベルク大学に学んだ。同大学での友人にミンコフスキーがおり、また1884年に助教授として着任したフルウィツAdolf Hurwitz(1859―1956)から多くのことを学んだ。ミンコフスキー、フルウィツと数学について論じ合ったことが大きな影響を与えた。1885年に学位を得ると、1年間ライプツィヒ、パリに遊学、帰国して1886年に母校の私講師になった。フルウィツは1892年にスイスのチューリヒ大学へ移るが、それまでの8年間、フルウィツの教えを受け、フルウィツの後を継いでケーニヒスベルク大学教授となり、1895年にはF・クラインの招きでゲッティンゲン大学教授となり、生涯をここで送った。 業績は数学の全分野にわたるが、年代別には次のようになる。まず1885~1893年は代数的形式論を研究し、不変式は有限個の基底からできていることをきわめて一般的に証明、また今日の代数幾何学での基本定理の一つ、零点定理もこの形式論のなかで証明された。1894~1898年、代数的数論を研究、有名な「数論報告」(1896)を完成し、類体論への基礎を固めた。1899~1903年の業績は幾何学基礎論への貢献である。1899年出版の『幾何学基礎論』Grundlagen der Geometrieは、20世紀の数学において抽象化へ踏み出す動機を与えたもので、数学思想史上の画期的な仕事である。1900年パリで開かれた第2回国際数学者会議で「数学の問題」という講演を行い、23の未解決の問題を出した(ヒルベルトの問題)。代数学、幾何学、解析学などの広い分野にわたるこれらの問題は数学者の関心をひき、20世紀の数学の発展にとって大きな契機を与えた。1904~1912年は解析学への貢献である。積分方程式を無限次元の一次連立方程式として考え、無限次の一次変換や、二次形式論を構成しながら、今日のヒルベルト空間の基礎を確立した。1913~1922年は理論物理学を詳しく研究し、1922年以降は数学基礎論の研究を行った。形式主義の立場をとり、数学を支配している論理を詳しく調べ研究した。著書にアッケルマンWilhelm Ackermann(1896―1962)との共著『理論論理学の基礎』Grundzüge der Theoretischen Logik(1928、1948改訂)、ベルナイズPaul I. Bernays(1888―1977)との共著『数学の基礎Ⅰ・Ⅱ』Grundlagen der Mathematik Ⅰ,Ⅱ(1934、1939)などがある。 [井関清志 2018年10月19日] 『C・リード著、彌永健一訳『ヒルベルト――現代数学の巨峰』(1972・岩波書店/岩波現代文庫)』 [参照項目] | | | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
…First, the skin is incised, and there are many d...
...Personality studies were established as an aca...
…The indirect taxes of the Republic included cust...
However, in 1965, trade between Japan and China s...
Name of the theater. Planned in 1923 (Taisho 12) ...
〘noun〙① lion's head. (i) A wooden lion's h...
This refers to a god enshrined in a corner of a r...
…In October 1891, she went to Paris to complete h...
Definition/Concept Atelectasis is the English word...
...distributed in Japan and China. There are two ...
[Kanji for personal names] [Sound] San (Wu) (Han) ...
Chinese author and medical scientist. His given n...
...Later, in 1800 (Kansei 12) during the former S...
...The former is a fairy tale, the latter a famil...
...Also the name of the group of intellectuals an...