Around 1900, German mathematician Hilbert proposed the idea of an infinite sequence of fourier series, which is a system of infinite simultaneous linear equations for the Fourier coefficients when solving integral equations. Nowadays, Hilbert spaces are defined more abstractly. For a vector space H with real or complex coefficients, where x , y ∈ H , the complex number 〈 x , y 〉 (or a real number when coefficients are real) is defined as the inner product, with a and b as coefficients. If 〈 x , y 〉=0 for x , y ∈ H , then x and y are said to be orthogonal. Then, in the Hilbert space, there exists a sequence of mutually orthogonal elements { x n ; ‖ x n ‖= 1 }, and any element x of H is Therefore, x has a one-to-one correspondence with { c n }∈( l 2 ), and since the norm is preserved, we can consider ( l 2 ) instead of H. Considering a bounded linear functional on a Hilbert space H , the elements of H are determined, Let M denote the set of bounded linear operators on a Hilbert space H. For T , S ∈ M , both the sum S + T and the scalar multiplication aT belong to M. Furthermore, ( ST )( x )= S ( T ( x )), x ∈ H This M is called a total operator algebra, and a subalgebra of M that is closed under the norm topology is called a C * algebra, and a subalgebra that is closed under the weak topology is called a Neumann algebra. Research into this field began with Neumann, and it has developed rapidly since the end of the Second World War, with applications to quantum mechanics and other fields. A bounded linear operator such that A * = A is called a self-adjoint operator. If this is also completely continuous, the same spectral theorem as for symmetric matrices holds. That is, Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
1900年ころ、ドイツの数学者ヒルベルトは積分方程式を解くのに、未知関数をフーリエ級数に展開すると、フーリエ係数についての無限連立一次方程式となることから、無限数列 現在ではヒルベルト空間はもっと抽象的に定義される。実数または複素数を係数とするベクトル空間Hで、x,y∈Hに対し、内積として複素数〈x,y〉(実数係数のときは実数)が定義され、a、bを係数とすると、 x,y∈Hに対して〈x,y〉=0ならば、xとyは直交するという。すると、ヒルベルト空間には互いに直交する要素の列{xn;‖xn‖=1}が存在し、Hの任意の要素xは よって、xは{cn}∈(l2)と一対一の対応がつき、しかもノルムを保存するから、Hの代りに(l2)で考えてもよい。 ヒルベルト空間H上の有界線形汎(はん)関数を考えると、Hの要素が決まり、 ヒルベルト空間Hの上の有界線形作用素の全体をMで表すと、T,S∈Mに対し、和S+Tも、スカラー倍aTもMに属し、さらに このMを全作用素環といい、その部分環でノルム位相で閉じているものをC*環、弱位相で閉じているものをノイマン環という。その研究はノイマンに始まり、量子力学などへの応用もあって、第二次世界大戦後急速な発展を遂げた部門である。 有界線形作用素でA*=Aとなるものを自己共役作用素という。これがさらに完全連続ならば、対称行列と同様なスペクトルの定理が成り立つ。すなわち、 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
...Typical poets include Tasso in Italy, Ronsard ...
A branch of Shingon Buddhism that arose in the la...
…The genus Dieffenbachia (Dieffenbachia) of the A...
[Born] 1018. Constantinople [Died] 1079? Byzantine...
...For example, in the case of coated steel struc...
〘Noun〙 A point is on the extension of a line segme...
One of the metalworking techniques. Also written ...
A general term for farmer groups that gained influ...
A Christian order of contemplation. It originated...
A two-act opera (K620) composed by Mozart in 1791...
A goma ritual unique to Shugendo. Goma sticks and ...
In Istanbul under the Ottoman Empire, which enjoye...
In China, this refers to lewd music that reflects ...
A Swedish actress. Born in Stockholm, she graduat...
A novel from the late Qing Dynasty in China. Writ...