Around 1900, German mathematician Hilbert proposed the idea of an infinite sequence of fourier series, which is a system of infinite simultaneous linear equations for the Fourier coefficients when solving integral equations. Nowadays, Hilbert spaces are defined more abstractly. For a vector space H with real or complex coefficients, where x , y ∈ H , the complex number 〈 x , y 〉 (or a real number when coefficients are real) is defined as the inner product, with a and b as coefficients. If 〈 x , y 〉=0 for x , y ∈ H , then x and y are said to be orthogonal. Then, in the Hilbert space, there exists a sequence of mutually orthogonal elements { x n ; ‖ x n ‖= 1 }, and any element x of H is Therefore, x has a one-to-one correspondence with { c n }∈( l 2 ), and since the norm is preserved, we can consider ( l 2 ) instead of H. Considering a bounded linear functional on a Hilbert space H , the elements of H are determined, Let M denote the set of bounded linear operators on a Hilbert space H. For T , S ∈ M , both the sum S + T and the scalar multiplication aT belong to M. Furthermore, ( ST )( x )= S ( T ( x )), x ∈ H This M is called a total operator algebra, and a subalgebra of M that is closed under the norm topology is called a C * algebra, and a subalgebra that is closed under the weak topology is called a Neumann algebra. Research into this field began with Neumann, and it has developed rapidly since the end of the Second World War, with applications to quantum mechanics and other fields. A bounded linear operator such that A * = A is called a self-adjoint operator. If this is also completely continuous, the same spectral theorem as for symmetric matrices holds. That is, Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
1900年ころ、ドイツの数学者ヒルベルトは積分方程式を解くのに、未知関数をフーリエ級数に展開すると、フーリエ係数についての無限連立一次方程式となることから、無限数列 現在ではヒルベルト空間はもっと抽象的に定義される。実数または複素数を係数とするベクトル空間Hで、x,y∈Hに対し、内積として複素数〈x,y〉(実数係数のときは実数)が定義され、a、bを係数とすると、 x,y∈Hに対して〈x,y〉=0ならば、xとyは直交するという。すると、ヒルベルト空間には互いに直交する要素の列{xn;‖xn‖=1}が存在し、Hの任意の要素xは よって、xは{cn}∈(l2)と一対一の対応がつき、しかもノルムを保存するから、Hの代りに(l2)で考えてもよい。 ヒルベルト空間H上の有界線形汎(はん)関数を考えると、Hの要素が決まり、 ヒルベルト空間Hの上の有界線形作用素の全体をMで表すと、T,S∈Mに対し、和S+Tも、スカラー倍aTもMに属し、さらに このMを全作用素環といい、その部分環でノルム位相で閉じているものをC*環、弱位相で閉じているものをノイマン環という。その研究はノイマンに始まり、量子力学などへの応用もあって、第二次世界大戦後急速な発展を遂げた部門である。 有界線形作用素でA*=Aとなるものを自己共役作用素という。これがさらに完全連続ならば、対称行列と同様なスペクトルの定理が成り立つ。すなわち、 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
A general term for the four elements in Group 2 o...
→Fittonia Source : Heibonsha Encyclopedia About My...
… [Nutrition Form] Bacteria such as sulfur bacter...
The Battle of Verdun (northeastern France) took pl...
...However, options trading in those days was fla...
The most famous trade route in the American Southw...
...A leading European manufacturer of general pho...
...The National Radio Astronomy Observatory in Gr...
A common terrestrial orchid (illustration) that pr...
[raw]? [Died] 1012 The fourth king of the Ziyarid ...
〘noun〙① (━suru) To not cultivate. ※Koyasan documen...
Theravada Buddhism was introduced from India to Ce...
…Italian Mannerist painter. His real name was Fra...
A bourgeois democratic revolution in China that b...
…Originally it means a small boat. However, it is...