Orthogonal transformation

Japanese: 直交変換 - ちょっこうへんかん
Orthogonal transformation

A mapping that maps a plane or space onto itself without changing the inner product (the sum of the products of the coordinate components of a point). The basic ones are rotation around the origin and symmetrical movement about the x-axis in a plane, and rotation around a line passing through the origin and symmetrical movement about the xy plane in space. In both planes and spaces, a combination of these two types of movement, or a mapping that does not move any points, is an orthogonal transformation. Therefore, an orthogonal transformation is both a congruent transformation and a linear transformation. Since a combination of two orthogonal transformations is also an orthogonal transformation, it can be seen that the set of orthogonal transformations forms a group. This is called an orthogonal (transformation) group. When two orthonormal systems are given, there is only one orthogonal transformation that maps one to the other, which is a basic property of orthogonal transformations. We have considered planes and spaces above, but more generally, a transformation that does not change the inner product of a metric vector space is also called an orthogonal transformation.

[Ryoichi Takagi]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

平面または空間を自分自身に写す写像で、内積(点の座標の成分どうしの積の和)を変えないようなものをいう。基本的なものとして、平面においては、原点の周りの回転移動、x軸に関する対称移動、空間においては、原点を通る直線を軸とする回転移動、xy平面に関する対称移動、がある。平面と空間それぞれにおいて、これらの2種類の移動を組み合わせたものも、あるいはすべての点を動かさない写像も直交変換である。したがって、直交変換は合同変換でもあり、線形変換でもある。二つの直交変換を組み合わせたものもまた直交変換になることから、直交変換の全体は群をなすことがわかる。これを直交(変換)群という。正規直交系が二つ与えられたとき、一方を他方に写すような直交変換が一つだけ定まるが、これは直交変換の基本的性質である。以上では平面と空間について考えたが、もっと一般に、計量ベクトル空間の内積を変えない変換も直交変換という。

[高木亮一]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Straight arc pattern - Chokkomon

>>:  Orthogonal system of function

Recommend

Bonifatius (English spelling)

A Christian saint. Born to an aristocratic family...

At-Tāif (English spelling)

A city in the Hijaz region of western Saudi Arabia...

Noskowski, Z. (English spelling) NoskowskiZ

...We cannot ignore the famous violinist Karol Jó...

Amaranthus retroflexus (English spelling)

…[Tetsuichi Yahara]. … *Some of the terms that me...

Chantilly porcelain - Chantilly

French porcelain and its kilns. A soft-paste porce...

Metallized Paper Capacitor

A type of capacitor (electrical storage device) u...

Kishida Drama Award

...This theater magazine was first published in A...

Kikunae Ikeda

A physical chemist known for inventing Ajinomoto....

Curie, I.

…In October 1891, she went to Paris to complete h...

Otoguishiki - Otoguishiki

...It is located on Itsukushima Island (Miyajima-...

Fukada [village] - Fukada

A village in Kuma County in southern Kumamoto Pref...

Andreoli, G.

… At that time, Renaissance humanism was on the r...

Shapley-Ames Catalogue (English)

...Therefore, the discovery of galaxies in the ea...

Friedmann, A.

...From this perspective, there is no distinction...

Lighttight

...There are five basic functions that a camera m...