A topological space is a set into which a topology structure, which is the basis for discussing continuity, has been introduced. Since we fix one set and develop various discussions within it, we call this set a space and each of its elements a point. Topological concepts include open sets, closed sets, accumulation points, neighborhoods, and convergence, and there are various ways to introduce topology into a space depending on these concepts. Next, we will show how to introduce it using open sets. When a space S is endowed with a collection of subsets of S with the following properties, S is said to have a topology in which S is an open set family. (1) contains the entire space S and the empty set ∅. The intersection of two sets in (2) also belongs to. (3) The union of any number of sets in (3) also belongs to (3). A set belonging to is called an open set. For two distinct points p and q in S, if we choose an open set U that contains p and an open set V that contains q such that they do not intersect (U ∩ V = ∅), then S is called a Hausdorff space, and spaces with this property are often discussed. A subset M of a topological space S is said to be compact if it has the following property: "Whenever we consider a collection of open sets whose union contains M, if we take an appropriate finite number of them, the union already contains M." Compactness is an important concept that is most often used when discussing the properties of topological spaces. In addition, a map f:S→T between two topological spaces S and T is continuous if it has the property that the inimage of an open set in T by f is always an open set in S. Let's take an example of a topological space. In the case of a number line, a set O is defined as an open set as follows. In other words, for any point p belonging to O, there is an interval in O that includes p. If we define the set as the set of open sets defined in this way, then the number line becomes a topological space. This is the prototype of a topological space. Next, if a function d(p, q) defined for two points p and q in a space S is, The first time that the concept of topology appeared in a general form was by Cantor (1872), who introduced and discussed the ideas of accumulation points and derived sets in the field of number lines. Hausdorff (1915) was the first to successfully introduce topology into general spaces. Subsequently, Kuratowski (1922), Beil, Cartan, and Birkhoff (1937) gave various methods of introducing topology. [Osamu Takenouchi] "Sets and Phases" by Osamu Takenouchi (1970, Chikuma Shobo) Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
集合のなかに連続性を議論するもとになる位相という構造が導入されたものを位相空間という。この集合を一つ固定し、そのなかでいろいろな議論を展開していくため、この集合を空間、その各要素を点とよぶ。位相的な概念としては、開集合、閉集合、集積点、近傍(きんぼう)、収束などがあり、空間に位相を導入する方法も、これら諸概念に応じていろいろある。次に開集合による導入の仕方を示す。 空間Sに、次の性質をもつSの部分集合の集まりが付与されているとき、Sにを開集合族とする位相が与えられたという。 (1)は全空間Sおよび空集合∅を含む。 (2)に属する二つの集合の共通部分はまたに属する。 (3)に属する集合(どれだけたくさんあってもよい)の和集合は、またに属する。 に属する集合を開集合という。Sの相異なる2点p、qに対して、pを含む開集合Uとqを含む開集合Vを適当にとれば、両者が交わりをもたないようにできる(U∩V=∅)とき、Sをハウスドルフ空間といい、この性質をもつ空間を議論することが多い。 位相空間Sの部分集合Mは次の性質をもつとき、コンパクトであるという。「開集合の集まりでその全体の和集合がMを含んでしまうようなものを考えるとき、いつでも、そのうちの適当な有限個をとればすでにその和集合がMを含んでいる」。コンパクト性は位相空間の性質を論ずる際にもっともよく用いられる重要な概念である。また、二つの位相空間S、Tの間の写像f:S→Tが連続であるのは、Tの開集合のfによる原像がつねにSの開集合となる、という性質をもつときである。 位相空間の例をあげよう。数直線では、集合Oが開集合であることを次のように定義する。すなわち、Oに属するどの点pに対しても、Oに含まれpを含む区間がとれるときである。このようにして定めた開集合の全体をとすれば、数直線は位相空間となる。これが位相空間の原型である。次に、空間Sの2点p、qに対して定義された関数d(p,q)が、 位相的な概念が初めて一般的な形で登場したのはカントルによる(1872)。彼は数直線において、集積点や導集合の考えを導入し議論した。一般の空間に位相を導入する議論に初めて成功したのはハウスドルフである(1915)。ついでクラトフスキー(1922)、ベーユやカルタンやバーコフ(1937)らによって位相の導入のいろいろな仕方が与えられた。 [竹之内脩] 『竹之内脩著『集合・位相』(1970・筑摩書房)』 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Topological group - Isougun (English spelling) topological group
>>: Iso Kinkan (English: The Golden Mirror of Medicine)
...To treat scars or bruises caused by burns or t...
…In Europe and the United States, there are many ...
...It is propagated by seeds or cuttings. There a...
…Encouraged by the success of this piece, he comp...
A general term for the remains of religious buildi...
The name of a region in southern Spain, facing th...
All income in a national fiscal year is called rev...
A photographer known as the father of modern Amer...
Gas rice cooker. ⇒Gas rice cooker Source: Kodansha...
...A major Hollywood genre along with westerns an...
A perennial plant of the lily family (illustration...
Also known as a lunar position camera. A device th...
An old town in Asakura County in the central-south...
〘 noun 〙 A general term for fishing that uses nets...
Songs to keep infants and put them to sleep. Lull...