Algebraic geometry

Japanese: 代数幾何学 - だいすうきかがく(英語表記)algebraic geometry
Algebraic geometry

Finite polynomials (1) f i (X 1 ,……,X n ) in n variables X 1 ,……,X n
(i=1,……,r)
For n-dimensional complex linear space C n , at point (x 1 ,……,x n ), f i (x 1 ,……,x n )=0
(i=1,……,r)
The set V of all (x 1 ,……,x n ) that satisfy is called an algebraic variety determined by f 1 ,……,f r . The study of algebraic varieties using algebra and geometry is called algebraic geometry.

Now, if there is an algebraic variety V in C n as described above, for a polynomial h=h(X 1 ,……,X n ), we can obtain a map h from V to C that maps a point (x 1 ,……,x n ) of V to h(x 1 ,……,x n ). The set of such maps C[V]={ h |h∈C[X 1 ,……,X n ]} has sums and products as h + g = h+g ,
hg = hg
Then, it becomes a commutative ring. This ring C[V] is called the coordinate ring of V. In particular, when C[V] is an integral domain, V is called an irreducible algebraic variety.

When V is irreducible, an integer 0≦d≦n is determined that satisfies the following two conditions:

(2) If necessary, renumber X 1 , X 2 , …, and then, …, we see that for any polynomial F(T 1 , …, T d )0, F(, …,) ≠ 0, but
(3) For j such that d+1≦j≦n, by choosing the polynomial G(T 1 ,……,T d ,T d+j )0 appropriately, we obtain G(,……,, )=0.

Such a d is called the dimension of an irreducible algebraic variety V. For example , an algebraic variety V in C2 determined by X22 - X13 + X1 is irreducible and has dimension 1. In addition, the problem of whether the two - dimensional irreducible algebraic variety V determined by X1n + X2n - X3n ( n3 ) has any points whose coordinates are nonzero integers is none other than the famous Fermat's problem.

When two points (x 1 ,……,x n ) (y 1 ,……,y n ) other than 0 in C n have proportional coordinates, such as x i =ty i (t≠0), and these two points are considered to be the same, then the space is called n-1-dimensional projective space P n-1 (C).

When f i in (1) is a homogeneous function, the set of points P n-1 (C) that make f i zero is called a projective algebraic variety. is a finite number of algebraic varieties glued together, similar to a compact topological space, and a beautiful theory has been developed.

More recently, modern algebraic geometry has expanded on a large scale and is being applied to other areas of mathematics, as seen in the theory of schemes, which considers entire submanifolds of algebraic varieties.

[Tsuneo Kanno]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

n個の変数X1、……、Xnの有限個の多項式
(1) fi(X1,……,Xn)
     (i=1,……,r)
に対し、n次元複素線形空間Cnの点(x1,……,xn)で
  fi(x1,……,xn)=0
   (i=1,……,r)
を満たす(x1,……,xn)の全体の集合Vを、f1,……,frで決まる代数多様体という。代数多様体を代数学や幾何学を用いて研究する学問を代数幾何学という。

 いま、前記のようなCnのなかの代数多様体Vがあるとき、多項式h=h(X1,……,Xn)に対し、Vの点(x1,……,xn)をh(x1,……,xn)に写すVからCへの写像hが得られる。このような写像全体C[V]={h|h∈C[X1,……,Xn]}は、和と積を
  h+g=h+g,
  hg=hg
とすると、可換環になる。この環C[V]をVの座標環という。とくにC[V]が整域のとき、Vを既約代数多様体という。

 Vが既約のとき、0≦d≦nなる整数で、次の2条件を満たすものが決まる。

(2)必要ならX1、X2、……の番号を付け直すと、,……,はどんな多項式F(T1,……,Td)0に対してもF(,……,)≠0であるが、
(3)d+1≦j≦nなるjに対しては、多項式G(T1,……,Td,Td+j)0をうまくとると、G(,……,, )=0となる。

 このようなdを既約代数多様体Vの次元という。たとえばX22-X13+X1で決まるC2内の代数多様体Vは既約で次元1である。またX1n+X2n-X3n(n3)で決まる二次元既約代数多様体Vが、座標が0でない整数になるような点をもつか、という問題は、有名なフェルマーの問題にほかならない。

 Cnから原点0=(0,……,0)を除き、0以外の2点(x1,……,xn)(y1,……,yn)がxi=tyi(t≠0)のように座標が比例しているとき、この2点を同じと考えたものをn-1次元射影空間Pn-1(C)という。

 (1)のfiが同次式のとき、Pn-1(C)の点でfiをゼロにする点全体を射影的代数多様体という。は、代数多様体を有限個糊(のり)付けしたものでコンパクト位相空間に似ており、美しい理論が完成している。

 さらに最近、代数多様体の部分多様体全体を考えて生まれたスキームの理論にみられるように、現代の代数幾何学は、大きな規模をもって発展しつつ、他の数学分野にも応用されている。

[菅野恒雄]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Algebraic curve

>>:  Algebraic function

Recommend

master antenna television

...It originated as a communal antenna television...

History of India - India

Extent of India and Characteristics of Indian His...

Principle of non-continuity of session -

The principle is that any matter that is not resol...

Bar (English)

A port and port city in southwestern Montenegro on...

Summary of the ancient roads

Books written by Hirata Atsutane. 2 volumes. In 1...

Chlorosis

…Albino is well known in laboratory animals such ...

Hetu Luoshu - Katorakusho

The river diagram was originally a type of jade b...

Bun'ya Bushi - Bun'ya Bushi

A school of joruri founded by Okamoto Fumiya. Oka...

Silver salt photography

A general term for photography that uses silver sa...

Ibn Waḥshīya (English spelling)

… [Jiro Iinuma] [middle east] The agricultural bo...

Notodontidae

...They infest various broad-leaved trees such as...

Tricyrtis

...A perennial plant of the lily family (illustra...

Era River - Era River

…A river that flows through northern Oita Prefect...

Pico della Mirandola, G. (English spelling) Pico della Mirandola G

…He was one of the leading Platonists of Renaissa...

Intraaortic balloon pumping

...When the cause is cardiac, cardiac stimulants,...