Finite polynomials (1) f i (X 1 ,……,X n ) in n variables X 1 ,……,X n Now, if there is an algebraic variety V in C n as described above, for a polynomial h=h(X 1 ,……,X n ), we can obtain a map h from V to C that maps a point (x 1 ,……,x n ) of V to h(x 1 ,……,x n ). The set of such maps C[V]={ h |h∈C[X 1 ,……,X n ]} has sums and products as h + g = h+g , When V is irreducible, an integer 0≦d≦n is determined that satisfies the following two conditions: (2) If necessary, renumber X 1 , X 2 , …, and then, …, we see that for any polynomial F(T 1 , …, T d )0, F(, …,) ≠ 0, but Such a d is called the dimension of an irreducible algebraic variety V. For example , an algebraic variety V in C2 determined by X22 - X13 + X1 is irreducible and has dimension 1. In addition, the problem of whether the two - dimensional irreducible algebraic variety V determined by X1n + X2n - X3n ( n3 ) has any points whose coordinates are nonzero integers is none other than the famous Fermat's problem. When two points (x 1 ,……,x n ) (y 1 ,……,y n ) other than 0 in C n have proportional coordinates, such as x i =ty i (t≠0), and these two points are considered to be the same, then the space is called n-1-dimensional projective space P n-1 (C). When f i in (1) is a homogeneous function, the set of points P n-1 (C) that make f i zero is called a projective algebraic variety. is a finite number of algebraic varieties glued together, similar to a compact topological space, and a beautiful theory has been developed. More recently, modern algebraic geometry has expanded on a large scale and is being applied to other areas of mathematics, as seen in the theory of schemes, which considers entire submanifolds of algebraic varieties. [Tsuneo Kanno] Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
n個の変数X1、……、Xnの有限個の多項式 いま、前記のようなCnのなかの代数多様体Vがあるとき、多項式h=h(X1,……,Xn)に対し、Vの点(x1,……,xn)をh(x1,……,xn)に写すVからCへの写像hが得られる。このような写像全体C[V]={h|h∈C[X1,……,Xn]}は、和と積を Vが既約のとき、0≦d≦nなる整数で、次の2条件を満たすものが決まる。 (2)必要ならX1、X2、……の番号を付け直すと、,……,はどんな多項式F(T1,……,Td)0に対してもF(,……,)≠0であるが、 このようなdを既約代数多様体Vの次元という。たとえばX22-X13+X1で決まるC2内の代数多様体Vは既約で次元1である。またX1n+X2n-X3n(n3)で決まる二次元既約代数多様体Vが、座標が0でない整数になるような点をもつか、という問題は、有名なフェルマーの問題にほかならない。 Cnから原点0=(0,……,0)を除き、0以外の2点(x1,……,xn)(y1,……,yn)がxi=tyi(t≠0)のように座標が比例しているとき、この2点を同じと考えたものをn-1次元射影空間Pn-1(C)という。 (1)のfiが同次式のとき、Pn-1(C)の点でfiをゼロにする点全体を射影的代数多様体という。は、代数多様体を有限個糊(のり)付けしたものでコンパクト位相空間に似ており、美しい理論が完成している。 さらに最近、代数多様体の部分多様体全体を考えて生まれたスキームの理論にみられるように、現代の代数幾何学は、大きな規模をもって発展しつつ、他の数学分野にも応用されている。 [菅野恒雄] 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
...It is distributed in Honshu, Shikoku, and Kyus...
...This is a pathological sole cutaneous reflex s...
…an old industrial area in the province of North ...
… [China] In ancient China, among the vagabond cl...
A device or circuit that converts (encodes) analog...
…Oats usually have no awns on their florets. Simi...
〘Noun〙 A stringed instrument. A 13-stringed koto u...
…Most of the building was constructed between 122...
The mouth of the bay, which opens to the north, i...
An island in the Pacific Ocean in the western Gulf...
… [Electric/Electronic Clocks] The idea of usin...
…In 1050, the remains of the saint were brought f...
Naval officer and diplomat. Born in Wakayama Pref...
…A general term for insects of the family Pyralid...
…Official name: Romania Area: 237,500 km2 Populat...