Light that has only a single wavelength or frequency. Usually, it refers to light that has some spread around it. Monochromaticity and phase are related, so in the case of completely monochromatic light, it is possible to determine the phase of the wave. Light with a consistent phase relationship is called coherent light. Previously, light that was used as monochromatic light, such as the green line of mercury (e line, wavelength 546.1 nanometers), was not monochromatic because it was broadened by the effects of isotopes and nuclear moments. For this reason, mercury lamps containing only 198 Hg (one of the isotopes of mercury) were used. With the development of laser light, monochromatic light has become easy to obtain. In particular, single-mode continuous wave lasers can produce almost completely monochromatic light. Optical fiber communication has also made it possible to perform multiplexed communication and digital coherent communication by selecting the phase of monochromatic light. The light emitted from free atoms and molecules is due to transitions between discontinuous energy levels, so it can be said to be a collection of many different types of monochromatic light. However, because energy levels have a lifespan due to spontaneous radiation, there is a spread in energy due to the uncertainty principle of quantum mechanics. Therefore, spectral lines have a certain width called natural width. In addition, there is also broadening due to the Doppler effect caused by the thermal motion of atoms and molecules. Therefore, it cannot be said to be a collection of completely monochromatic light. A monochromator is a device that extracts only light of a specific wavelength from a continuous light source with a wide wavelength range, such as white light. The light obtained is approximately monochromatic (quasi-monochromatic), and the monochromaticity is mostly determined by the precision of the optical system and the width of the slit. By combining it with a photoelectric detector and scanning the wavelength, the intensity distribution of the spectrum can be obtained. It is also used to measure absorption spectra from the change in intensity distribution due to absorption by a sample. [Tatsutake Onaka and Masahide Ito] [References] | | | | | | | | | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
単一の波長、あるいは振動数だけをもった光。普通はその周りに多少の広がりをもった光をさす場合が多い。単色性と位相とは関連しているので、完全な単色の場合には、波の位相まで決めることができる。位相関係のそろった光をコヒーレント光という。 以前には単色光として用いられた光、たとえば水銀の緑線(e線。波長546.1ナノメートル)でも、同位元素や核モーメントの影響で広がっているので単色ではない。そのため198Hg(水銀のアイソトープの一つ)だけの水銀灯が用いられた。レーザー光ができてからは、単色光が簡単に得られるようになった。とくに単一モード連続発振レーザーでは、ほとんど完全な単色光が得られる。光ファイバー通信では、単色光の位相選択による多重通信やデジタル・コヒーレント通信も可能になった。 自由な原子や分子から放射される光は、それらの不連続なエネルギー準位間の遷移によるものなので、多種類の単色光の集まりといえる。しかし、エネルギー準位には自発放射による寿命があるので、量子力学的な不確定性原理によるエネルギーの広がりをもっている。そのため、スペクトル線は自然幅とよばれるある幅をもっている。そのほかに原子・分子の熱運動によるドップラー効果による広がりもある。したがって完全な単色光の集まりとはいえない。 白色光のような波長領域の広い連続光源からある特定の波長の光だけを取り出す装置をモノクロメーターとよぶ。得られるのは近似的な単色光(準単色光)で、単色性はほとんど光学系の精密度とスリット(すきま)の幅によって決まる。光電的な検出器と組み合わせ、波長走査をすることによって、スペクトルの強度分布を求めることができる。また、試料の吸収による強度分布の変化から吸収スペクトルを測定するのに用いられる。 [尾中龍猛・伊藤雅英] [参照項目] | | | | | | | | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
>>: Coeducational - danjokyougaku
… [Masayuki Onishi] [Tamil Literature] The Dravid...
1887‐1958 A pro-Western Egyptian intellectual in t...
One of the Tai languages, spoken by the Zhuang peo...
Under the Ritsuryo system, a person who was oblig...
...The former considered each hair cell to be a r...
…Generally, it refers to trade associations of me...
A Muslim mystic born in Iran. He began Sufism at ...
…The main feature of the average horizontal circu...
A container made by bending a thin board of cypre...
A compound in which two planar polyatomic molecule...
…Initially, newspapers were closed on the Christi...
…After the First World War, it lost its position ...
...Two men who marched on the ice survived, and t...
American film director. Born in Palermo, Sicily, ...
… [Masao Fujii] [Christian altar decoration] The ...