Principal axis transformation

Japanese: 主軸変換 - しゅじくへんかん
Principal axis transformation

Given the quadratic formula f ( x , y ) = ax2 + 2hxy + by2 + c
If we rotate the coordinate system by an appropriate angle to create a new coordinate system,
f ( X , Y ) = lX 2 + mY 2 + n
The xy terms can be eliminated as shown below. A rotation that eliminates the product of the variables in a quadratic formula is called a principal axis transformation. When a curve expressed by a quadratic formula, i.e., a quadratic curve, is symmetric with respect to a line, this line is called the principal axis. An ellipse and a hyperbola have two principal axes that are perpendicular to each other, and a parabola has one principal axis. Therefore, performing a principal axis transformation on a quadratic formula is nothing more than taking a line parallel to the principal axis of the quadratic curve as the coordinate system. A principal axis transformation is also used to diagonalize a symmetric matrix, that is, to select an appropriate orthogonal matrix U for a symmetric matrix S and make U -1 SU the diagonal matrix. A linear map f that maps a plane onto itself can be expressed as a matrix whenever an orthonormal basis is determined for the plane. When the matrix is ​​symmetric, it is known that if a new appropriate orthonormal basis is selected, the matrix representation of f with respect to this becomes diagonal. In this case, the orthogonal transformation that maps the old orthogonal basis to the new orthogonal basis is called the principal axis transformation of f .

Although the above two types of principal axis transformations appear to be different, the quadratic equation ax 2 +2 hxy + by 2 can be transformed into a symmetric matrix

If we consider it in correspondence with f, we can see that it is essentially the same thing. From the standpoint of linear mapping, the new orthonormal basis mentioned above is the eigenvector of f .

[Ryoichi Takagi]

[Reference item] | Eigenvalue
Principal axis transformation example
©Shogakukan ">

Principal axis transformation example


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

与えられた二次式
  f(x, y)=ax2+2hxyby2c
に対して、座標系を適当な角度だけ回転して新しい座標系をつくれば、
  f(X, Y)=lX2mY2n
のようにxyの項がなくなるようにできる。このように二次式の変数の積の項をなくすような回転移動を主軸変換(主軸への変換という意味)という。二次式で表される曲線、すなわち二次曲線が、ある直線に関して対称になっているとき、この直線を主軸という。楕円(だえん)と双曲線は直交する2本の主軸をもち、放物線は1本の主軸をもつ。したがって二次式の主軸変換をすることは、この二次曲線の主軸に平行な直線を座標系にとることにほかならない。また対称行列を対角化すること、すなわち対称行列Sに対し、適当に直交行列Uを選び、U-1SUを対角行列とすることを主軸変換ということもある。平面を自分自身に写す線形写像fは、平面に一つの正規直交基底を決めるたびに行列で表現できる。それが対称行列のときは、新たに適当な正規直交基底を選ぶと、これに関してfを行列により表現したものが対角形になることが知られている。このとき、旧正規直交基底を新正規直交基底に写すような直交変換をfの主軸変換という。

 以上の2種類の主軸変換は見かけ上異なるが、二次式ax2+2hxyby2を対称行列

に対応させて考えてみれば、内容的に同一のものであることがわかる。なお、線形写像の立場からいうと、先述の新正規直交基底はfの固有ベクトルになっている。

[高木亮一]

[参照項目] | 固有値
主軸変換の例
©Shogakukan">

主軸変換の例


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Sesamoid bone -

>>:  Shushikou

Recommend

Osaka Commodity Exchange

…At the time of its establishment, the exchange l...

Atlantic Codex - Atlantic Codex

… [Manuscript - Record of Mental Activity] Of the...

Taste bud - Mirai (English spelling)

Also called taste buds. A sensory organ for taste...

splint

...A type of splint used primarily to immobilize ...

Wood saccharification - Osmanthus napus

Also called wood hydrolysis, this refers to the pr...

Edward Alexander Westermarck

Finnish-born sociologist and anthropologist. He f...

Jian'an literature (English: Jian'an literature)

Jian'an is the era name of Emperor Xian, the l...

Situation semantics

Situation semantics is a philosophical proposal th...

Zytomil

A city in northwestern Ukraine. It is located abou...

Oonaohiuta - Oonaohiuta

...The instruments used are a flute, a hichiriki,...

Shareholders' rights

Various rights that shareholders have based on th...

star apple

…When the fruit matures, the white translucent ag...

Guinea (English spelling)

Official name: Republic of Guinea. Area: 245,857 k...

Ari bin brode (English spelling) Aribinbrode

…A book that compiles records and anecdotes relat...

Reception room - Ousetuma

〘 noun 〙 = reception room ※From Futari Nyobo (1891...