The degree to which a system can be deformed is called the degrees of freedom of that system. (1) Degrees of freedom of a mechanical system The number of coordinates that can be changed independently to specify the configuration of the system. For example, the degrees of freedom of a mass point are 3. This is because three coordinates are needed to specify its position ( x , y , z in a Cartesian coordinate system, r , θ in polar coordinates, etc.), and these can be changed independently by moving the mass point. The degrees of freedom of a non-deformable solid (rigid body) are 6. This is because the configuration is determined by giving the coordinates (9 coordinates) of any three points in the rigid body, including the orientation of the rigid body, but the mutual distance between the three points does not change, so there are three relationships between the coordinates, and the number of coordinates that can be changed freely is 6. Three coordinates are needed to specify the position of one point of the rigid body (for example, the center of gravity), and three angles are needed to specify the orientation of the rigid body by fixing that point, so the degrees of freedom are 6. However, for example, if this rigid body rolls on a plane with friction without slipping, the six coordinates cannot be changed independently. For a spherical rigid body, the distance from the plane to the center of the sphere does not change, so the degrees of freedom are five. Furthermore, as the ball rolls, the rotation angle of the ball and the amount of movement of the center position are not independent. Therefore, the degrees of freedom are less than five. However, in general, when there is sliding, it can be shown that there is no function that expresses the relationship between the rotation angle of the ball and the center position, so five coordinates must be used to describe the motion of the ball. This type of mechanical system is called a non-holonomic system. (2) Thermodynamic degrees of freedom: The number of state variables that can be changed without changing the number of phases in a material system in thermal equilibrium. According to Gibbs' phase rule, (degrees of freedom) = (number of components) - (number of phases) + 2 [Hiroshi Ezawa] [Reference] | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
一つの系において変形させることができる度合いを、その系の自由度という。 (1)力学系の自由度 系の配位を指定する座標のうち任意に独立な変化をさせられるものの数をいう。たとえば、質点の自由度は3である。なぜなら、その位置を指定するのに(直角座標系なら、x、y、zの、極座標ならr、θ、というように)三つの座標が必要で、それらは、質点を動かすことにより独立に任意に変えられる。変形しない固体(剛体)の自由度は6である。なぜなら、剛体内の任意の3点の座標(9個)を与えると剛体の向きも含めて配位が定まるが、3点の相互の距離は変わらないので、座標の間に三つの関係があり、自由に変えられる座標は6個になる。剛体の1点(たとえば重心)の位置を指定するのに3個の座標、その点を固定して剛体の向きを指定するのに3個の角を用いる必要があり、つまり自由度は6になる。しかし、たとえばこの剛体が摩擦のある平面の上を滑らずに転がる場合には、6個の座標は独立には変えられない。球形の剛体なら、平面から球の中心までの距離は変わらないので自由度は5になる。さらに、球が転がっていくとき、球の回転角と中心の位置の移動の量は独立ではない。したがって自由度は5より小となる。しかし、一般に滑りのある場合には、球の回転角と中心の位置の関係を表す関数はないことが示されるので、この球の運動を記述するには5個の座標を用いざるをえない。この種の力学系を非ホロノーム系とよぶ。 (2)熱力学的自由度 熱平衡の状態にある物質系において相の数を変えることなしに変化させることのできる状態変数の数をいう。ギブスの相律によれば [江沢 洋] [参照項目] | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
>>: Packed column (Jyuutentou)
...Chinese folk tale. Also known as "Leifeng...
He was the founder and chief priest of the Kodo K...
A school of British provincial painting in the ear...
...Nitrogen fertilizer made by combining nitric a...
This is a book that lists the village tax rates fo...
A famous anthology of medieval European poems. It ...
An image in which an object (or its image) appear...
Vaccines designed to confer immunity against two o...
Title of a Noh piece. Fourth piece. Author unknown...
…For many years since their discovery, stellate c...
…A single-sided drum in the shape of a wine cup f...
A city in the center of the Osumi Peninsula in Kag...
This refers to a seedbed where rice, rush grass, ...
...It is a gentle fish, somewhat nervous, but can...
A swordsman of the late Edo period, and the found...