(1) Let S be a topological space, M be a subset of it, and M ' be the derived set of M. If a point p of M is not included in M ', that is, if p ∈ M and p ∉ M ', then point p is called an isolated point of M , and a set consisting of only isolated points is called a discrete set. (2) Let M be all the points on a plane curve f ( x , y ) = 0. If there is no other point on M with f ( x , y ) = 0 in the vicinity of point p , then point p is said to be an isolated point of the curve. In other words, it is a point that is isolated from the curve, but whose coordinates satisfy the equation of the curve. For example, if a < 0 on the curve y2 - x2 ( x + a ) = 0, then the origin (0,0) is a point on this curve, and since x + a < 0 in the vicinity, there is no corresponding real value of y . Therefore, the origin (0,0) is an isolated point of this curve. This can be interpreted as a point that is isolated as a real branch, but is connected to the curve by a branch of the imaginary component. Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information |
(1) S を位相空間とし,その部分集合を M,M の導集合を M'とする。いま M の点 p が,M'には含まれないとき,すなわち p∈M かつ p∉M'のとき,点 p を M の孤立点といい,孤立点だけからなる集合を離散集合という。(2) 平面上の曲線 f(x,y)=0 上の点全体を M とするとき,M 上の点 p の近傍に,p 以外には,曲線 f(x,y)=0 の点が存在しなければ,点 p はその曲線の孤立点であるという。すなわち,曲線から孤立はしているが,その座標が曲線の方程式を満たしている点である。たとえば,曲線 y2-x2(x+a)=0 において a<0 ならば,原点(0,0)はこの曲線上の点であり,その近傍では x+a<0 だから,それに対応する y の実数値は存在しない。それゆえ原点(0,0)はこの曲線の孤立点である。これは実数の枝としては孤立しているが,虚数成分の枝で曲線とつながっている点と解釈できる。
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報 |
In Europe and the United States, the former is ca...
…These scriptures are said to have been preached ...
…A bird of the Aramidae family of cranes. This bi...
A politician from the end of the Edo period and t...
A self-selected collection of poems by the late H...
Some scholars believe that India is the birthplac...
A coelenterate (cnidaria) of the family Cylindrica...
A general term for the six major philosophical sy...
...On the other hand, some species were once abun...
The army of the Parliamentarians in the Puritan Re...
[Born] 436 B.C. Athens Died 338 BC. Athenian Greek...
715‐766 Bishop and saint in the Frankish period. A...
The capital and largest city of Saudi Arabia. Loca...
...They generally contain poisonous alkaloids, bu...
A type of writing instrument. The ink inside the ...