A general term for materials used in construction. In a broad sense, it also includes temporary materials used in constructing buildings. Depending on their use and function, they are classified into structural materials, base materials, finishing materials, insulation materials, acoustic materials, lighting materials, fireproofing materials, adhesive/jointing materials, equipment materials, temporary materials, etc., and depending on the area they are used in, they are classified into roofing materials, exterior wall materials, interior wall materials, ceiling materials, floor materials, opening materials, etc. [Yoshio Kasai] TransitionArchitecture and the materials that compose it are inseparably linked. With the development of human life and culture and production technology, architectural styles have changed, and with this, building materials have also changed. The invention of new materials has also been the driving force behind the creation of new structures. [Yoshio Kasai] The development of wooden construction and its materialsWooden buildings were mainstream in regions with abundant forests. At first, they were huts made of logs, but as tools were developed, sawn lumber began to be used. Many stone and brick buildings also use wood for the framework and trusswork. Wooden trusses (a framework made up of an arrangement of triangles) made it possible to build large roofs and structures with large spans (the distance between the supports of beams). Laminated timber, made by gluing small pieces of lumber or narrow boards together, was also used. 2-inch by 4-inch (two-by-four) construction is widespread, especially in North America, and is also widely used in Japan for prefabricated (factory-made) housing. [Yoshio Kasai and Shiro Nishioka] Development of masonry construction and its materialsSun-dried bricks, made by mixing cut straw or reeds with mud, have been used since ancient times in dry regions with little rainfall, and were used to build large structures such as temples at ruins in Ancient Egypt (before 4000 BC), as well as in Mesopotamia and Egypt. There has also been a method since ancient times of building walls by mixing grass fibers with mud and applying the mixture. A similar method is still used in Central Asia today. In ancient Egypt, tools made of copper or hard-forged bronze were available from before 4000 BC, and were used to build stone palaces, temples, tombs, and monuments. The Pyramid of Djoser (c. 2650 BC) is considered to be the oldest megalithic structure. In stone architecture, the rule has long been to use structural stone materials that are produced near the construction site, except for marble for surface finishing and decoration. Great buildings in ancient Egypt and Greece were based on a lintel structure using large stone beams. Although the style changed, these structures have been used in medieval European architecture since the Roman period as large colonnaded buildings, and are still used as exterior designs in modern times. Mass production of fired bricks was possible in regions where fuel such as shrubs and reeds were available in large quantities. It is said that bricks were already being fired in Mesopotamia around 3000 BC. Looking at the ruins of ancient Rome (6th century BC), we can see that large temples were constructed out of brick. Brick construction made it possible to create arch-type structures, which allowed the construction of large domes. Since then, from the Middle Ages through to the early modern period, large buildings such as churches and palaces were built using this structure not only in Europe but also in the Middle East and India. [Yoshio Kasai] Steel structure and materialsAs iron production increased rapidly in the second half of the 18th century, wrought iron and cast iron roofs and beams with large spans began to be built, mainly in France and the UK. In the 1840s, an eight-story steel-framed sugar refinery was built in Europe. After that, the Great Exhibition in London (1851) and the following Paris Exhibition (1855) were the catalysts for the rapid spread of steel-framed architecture from Europe to America. At the same time as iron was mass-produced, large glass, although not a structural material, began to be produced. A symbolic building of this is the Crystal Palace (124 meters wide, 563 meters long) at the Great Exhibition in London, which was made entirely of glass and iron. Today, skyscrapers are made of H-shaped steel and have fireproof coatings. [Yoshio Kasai] Reinforced concrete and its materialsFrom the end of the 19th century to the beginning of the 20th century, reinforced concrete was developed mainly in Germany, and made great strides in the United States and Japan. In reinforced concrete structures, tensile forces are borne by the reinforcing bars, and compressive forces are borne by the concrete. The reinforcing bars are protected from rust by the alkalinity of the concrete, and in the event of a fire, the reinforcing bars are covered by the concrete, making them safe. Since it can be made to any size on-site and is inexpensive, it is the mainstream for earthquake-resistant and fire-resistant buildings. [Yoshio Kasai] Transition of modern architectural structures in Japan and their materialsBrick buildings were introduced from the end of the Edo period to the beginning of the Meiji period. In 1872 (Meiji 5), there was a major fire in Tokyo from Ginza to Tsukiji, after which construction of the Ginza Brick Town began. Full-scale brick production began in 1887. Brick buildings suffered major damage in the Nobi earthquake of 1891, and many collapsed in the Great Kanto earthquake (1923), after which they fell into complete decline. Cast iron columns were already imported in 1867 (Keio 3). Domestic cast iron columns were cast and used by the Tokyo Railway Bureau in 1882 (Meiji 15). Full-scale steel frame construction began around 1900 (Meiji 33), and by the time of the Great Kanto Earthquake, a considerable number of 7-8 story rental buildings with curtain walls made of imported steel frames had been built under contract with American construction companies. Most of these buildings were severely damaged in the earthquake, with brick walls destroyed, covering materials crumbling, and steel frames bending in fires. After that, steel frame construction spread mainly to large span single-story buildings such as factories and gymnasiums, but no steel frame high-rise buildings were built at all until the construction boom of skyscraper hotels and rental buildings following the Tokyo Olympics after World War II. For skyscrapers that could not be built with reinforced concrete structures, large H-shaped steel beams were used and covered with fireproofing materials such as rock wool. A considerable number of reinforced concrete buildings had been built before the Great Kanto Earthquake, but they sustained little damage in the earthquake and their earthquake and fire resistance had been proven, and they became the mainstream of buildings up to 5 or 6 stories in Japan, coupled with the demand for fireproofing in cities. After World War II, many public and private wall-type apartment buildings (houses that are structured to provide earthquake resistance through the walls without using pillars or beams, and that allow for as much usable interior space as possible) were built. Steel-reinforced concrete construction, in which a steel frame is reinforced with reinforced concrete to ensure earthquake and fire resistance, is unique to Japan and became widespread rapidly after the Great Kanto Earthquake. Most 6-9 story buildings are made with this construction, but high-rise buildings between 9 and 15 or 16 stories always use this construction. High-rise residential buildings used as disaster prevention bases are also made with steel-reinforced concrete. [Yoshio Kasai and Shiro Nishioka] Building MaterialsBuilding materials are extremely diverse, making them difficult to categorize as an academic field, but they can be broadly classified into the following five categories. (1) Basic Building Materials Science: A study that examines the physical and chemical properties, characteristics, and uses of basic building materials such as wood, stone, steel, and concrete. (2) Materials science by use and performance: A science that organizes materials such as structural materials, finishing materials, and insulation materials based on their uses and performance. (3) Materials Science by Part: A study that categorizes materials by the parts of a building, such as roof materials, exterior wall materials, interior wall materials, ceiling materials, floor materials, and opening materials. (4) Materials Design: A science that systematically selects and designs materials while taking into account the requirements of the material's properties, performance, workability, durability, and economy. (5) Materials science: A science that classifies materials based on the premise that the properties and performance of materials are determined by their composition (ingredients), structure (atomic arrangement, crystalline state, etc.), and structure (solid structure, porous structure, fibrous structure, composite structure, etc.). [Yoshio Kasai] "History of Building Materials" by Norman Deby, translated by Yamada Koichi (1969, Industrial Research Institute)" ▽ "History of the Development of Modern Japanese Architecture, edited by the Architectural Institute of Japan (1972, Maruzen) " ▽ "Architectural Engineering Series 6: Building Materials" by Kawakami Yoshito, Harada Shizuo, Takasu Koji, Honda Satoru, Shimasoe Yoji, et al. (2009, Asakura Publishing)" ▽ "Building Materials, 4th edition, by Tachibana Yoshinori and Sugiyama Hiroshi (2010, Ichigaya Publishing)" ©Shogakukan "> Classification and examples of building materials by function ©Shogakukan "> Main building materials and characteristics of various structures Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
建築に使用される材料の総称。広義には建築物をつくる際の仮設材料をも含む。 用途・機能によって、構造材料、下地材料、仕上げ材料、断熱材料、音響材料、採光材料、防火材料、接着・接合材料、設備材料、仮設材料などに分類され、使用される部位によって、屋根材料、外壁材料、内壁材料、天井材料、床材料、開口部材料などに分類される。 [笠井芳夫] 変遷建築とそれを構成する材料とは不可分の関係にある。人類の生活文化や生産技術の発展に伴って建築様式が変化し、これに伴い建築材料も変わり、また新材料の発明が新構造を誕生させる原動力となってきた。 [笠井芳夫] 木造の発展とその材料木造の建物は森林の豊富な地方において主流をなした。初めは丸太の掘立て小屋式であったが、道具の発達とともに製材されたものを使うようになった。石造・れんが造建築でも架構材や小屋組として木材を使ったものが多い。木造トラス(三角形の組合せによる骨組)は大屋根や大スパン(梁(はり)の支点間の距離)構造物を可能にした。また接着剤で小割材や小幅板を接着した集成材も用いられる。北アメリカを中心に2インチ×4インチ(ツーバイフォー)構造が普及しているが、日本でもプレハブ(工場生産)住宅に多く用いられている。 [笠井芳夫・西岡思郎] 組積造の発展とその材料切藁(きりわら)やアシなどを泥と混ぜ合わせてつくった日干しれんがは、降雨の少ない乾燥した地方では古くから使われ、古代エジプトの遺跡(紀元前4000年以前)や、メソポタミア、エジプトなどにおいても神殿など大規模な構造物がつくられた。泥に草の繊維を混ぜて塗り付けて壁をつくる方法も古代からあった。現在でも中央アジアではこれに近いものがある。 古代エジプトにおいては紀元前4000年以前から銅または硬く鍛えた青銅製の道具があり、これを用いて石造の宮殿、神殿、墳墓、記念物がつくられた。ジョセル王のピラミッド(前2650年ごろ)はもっとも古い巨石構造物とされている。石造建築においては、表面仕上げや装飾用の大理石などを除けば、構造用石材は古来、建設現場近くに産出する材料を使用するのが原則であった。古代エジプトやギリシアの大建築物は大きな石の梁(はり)を用いた楣(まぐさ)式構造によっている。これらの構造は、様式は変わっても、大柱列建築物としてローマ時代から中世ヨーロッパの建築に用いられ、近代においても外装意匠として用いられている。 焼成れんがの多量生産は、低木、アシなどの燃料が多量に得られる地方において可能であった。紀元前3000年ごろにはすでにメソポタミアではれんがを焼いていたという。古代ローマの遺跡(前6世紀)をみると、れんが造の大神殿が造営されていたことがわかる。れんが造は迫持(せりもち)式(アーチ式)の架構を可能とし、大ドームが構成できるようになった。以来、中世から近世にかけてヨーロッパはもちろん中近東からインドにおいて、この構造による教会、宮殿などの大建築物がつくられた。 [笠井芳夫] 鉄骨構造とその材料18世紀後半に鉄の生産が急激に増えると、錬鉄や鋳鉄を用いたスパンの大きい屋根や梁がフランス、イギリスなどを中心に架けられるようになった。1840年代にはヨーロッパでは8階建ての鉄骨造の精糖工場が建設されている。以後ロンドン万国博覧会(1851)、次のパリ万国博覧会(1855)を契機として鉄骨建築は一気にヨーロッパからアメリカへと普及した。鉄の量産化と時を同じくして、構造材料ではないが、大形ガラスが生産されるようになった。その象徴的な建物として、ロンドン万国博覧会におけるガラスと鉄だけで構成した水晶宮(クリスタル・パレス。幅124メートル、長さ563メートル)があげられる。今日では超高層建築はH形鋼を用い、耐火被覆を施工したものとなっている。 [笠井芳夫] 鉄筋コンクリートとその材料19世紀末から20世紀初頭にかけて鉄筋コンクリートの開発がドイツを中心に行われ、アメリカ、日本において大発展を遂げた。鉄筋コンクリート構造は、引張り力を鉄筋に負担させ、圧縮力をコンクリートに負担させるもので、鉄筋はコンクリートのアルカリ性によって保護されて錆(さ)びず、かつ火災の際も鉄筋はコンクリートによって被覆されているので安全である。現場で自由な寸法のものがつくれ、安価であるので、耐震・耐火建築の主流をなしている。 [笠井芳夫] 日本における近代建築構造の変遷とその材料幕末から明治初年にかけて、れんが造建築が導入された。1872年(明治5)東京の銀座から築地(つきじ)にかけて大火があり、そのあと銀座れんが街の建設が始まっている。本格的なれんがの生産は1887年からである。れんが造の建物は1891年の濃尾大地震で大被害を生じ、さらに関東大震災(1923)で倒壊するものが多数あり、以後完全に衰退した。 鋳鉄円柱は1867年(慶応3)にすでに輸入されている。国産の鋳鉄柱は1882年(明治15)東京鉄道局が鋳造して使用した。本格的な鉄骨造は1900年(明治33)ごろから始まり、関東大震災までに、アメリカの建設会社の請負で輸入鉄骨による帳壁(ちょうへき)式7、8階の貸ビルが相当数つくられた。これらのほとんどが大震災でれんが壁が破壊したり、被覆材が崩れ落ち、火災によって鉄骨が曲がったりして大被害を受けた。以後、鉄骨造は工場、体育館など大スパンの平屋を中心に普及したが、鉄骨高層ビルは、第二次世界大戦後の東京オリンピックを契機とする超高層ホテルや貸ビル建設のラッシュを迎えるまでまったく建設されなかった。鉄筋コンクリート構造では建設が不可能な超高層ビルにおいてはいずれも大形H形鋼を用い、岩綿(ロックウール)などの人工繊維で耐火被覆している。 鉄筋コンクリート造の建物は関東大震災までに相当数つくられたが、震災による被害が少なく、耐震・耐火性が実証され、以後都市の不燃化の要請と相まって、日本の5、6階までの建築の主流をなした。第二次世界大戦後は公営や民営の壁式集合住宅(柱、梁を使わないで壁で耐震性能をもたせる構造にし、少しでも室内空間を広く利用できるようにした住宅)が多くつくられている。 鉄骨の骨組をさらに鉄筋コンクリートで固めて耐震・耐火性を確保する鉄骨鉄筋コンクリート構造は日本独特のもので、関東大震災後急速に普及した。6~9階のビルはこの構造によるものが多いが、9階以上15、16階以下の高層ビルでは、かならずこの構造が用いられている。また防災拠点として用いられる高層住宅なども鉄骨鉄筋コンクリート造でつくられている。 [笠井芳夫・西岡思郎] 建築材料学建築材料はきわめて多様であるため、これを学問として系統づけにくいが、大きく次の五つに分類される。 (1)基本建築材料学 木材、石材、鋼材、コンクリートなど基本建築材料について、それぞれ物理的・化学的性質、特徴、用途について系統づける学問。 (2)用途・性能別材料学 構造材料、仕上げ材料、断熱材料などの用途、性能を主題として系統づける学問。 (3)部位別材料学 屋根材料、外壁材料、内壁材料、天井材料、床材料、開口部材料など建築の部位を主題として系統づける学問。 (4)材料設計法 材料の性質、性能、施工性、耐久性、経済性などを要求条件に対応させながら材料の選定設計を組織的に行う学問。 (5)材料科学 材料の性質、性能はその組成(成分)、構造(原子の配列、結晶状態など)、組織(密実な組織、空隙(くうげき)組織、繊維組織、複合組織など)によって決まるという立場から材料を系統づける学問。 [笠井芳夫] 『ノーマン・デビィー著、山田幸一訳『建築材料の歴史』(1969・工業調査会)』▽『日本建築学会編『近代日本建築学発達史』(1972・丸善)』▽『河上嘉人・原田志津男・高巣幸二・本田悟・島添洋治他著『シリーズ「建築工学」6 建築材料』(2009・朝倉書店)』▽『橘高義典・杉山央著『建築材料』第4版(2010・市ヶ谷出版社)』 ©Shogakukan"> 建築材料の機能による分類と例示 ©Shogakukan"> 各種構造の主要建築材料および特徴 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
>>: Building structure - kenchiku kozo (English spelling) building structure
…[Yoshiharu Iijima]. … *Some of the terminology t...
Nephews and nieces are a type of collateral relati...
…A ring-shaped accessory worn around the neck or ...
The largest Ainu uprising in modern times occurred...
…Some refer to Kaison as Kaiken or Arason. He was...
…After the First World War, the emergence of a hu...
A village in Ishikawa County in southern Ishikawa ...
...The Bromeliaceae family is divided into three ...
Born: Around 1563, Pisa [Died] c. 1647. London Ita...
… The beginning of airport planning in Japan was ...
Gas stations primarily fill automobiles with gasol...
A literary magazine from the Meiji period. It was ...
1906‐79 German-born Islamic art historian. Studied...
GATT (the predecessor of the World Trade Organiza...
A disease that begins 1-2 weeks after cold symptom...