Coefficient - keisuu (English spelling)

Japanese: 係数 - けいすう(英語表記)coefficient
Coefficient - keisuu (English spelling)
(1) Coefficients of monomials In the monomial 3 ax 2 , 3 is said to be the coefficient of ax 2 , and 3 a is said to be the coefficient of x 2. In this way, when focusing on a letter in a monomial, all the remaining factors are called the coefficients of the letter in question. When there is a numeric factor, that number is always the coefficient of another letter, and is called a numeric coefficient.
(2) When a polynomial f of coefficients x is written in the form f ( x ) = a0xn + a1xn - 1 + ... + an - 2x2 + an- 1x + an , the numbers ai ( i = 0, 1, 2, ..., n ) are called the coefficients of polynomial f . If all the ai are elements of field K , then f is called a polynomial over field K.
(3) Coefficients in vector spaces Polynomials can also be thought of as ( n + 1)-dimensional vectors with a basis of xn , xn -1 , ..., x , 1. Therefore, scalars in vector spaces are generally called coefficients.

Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information

Japanese:
(1) 単項式の係数 単項式 3ax2 において,3は ax2 の係数,3ax2 の係数であるという。このように単項式において,そのなかの文字に着目したとき,残りの因数全体を,着目した文字の係数という。数因数がある場合,その数は常に他の文字の係数であって,これを数係数という。
(2) 多項式の係数 x の多項式 ffx)=a0xna1xn-1+…+an-2x2an-1xan の形に書いたとき,数 aii=0,1,2,…,n)を,多項式 f の係数という。すべての ai が体 K の元ならば,この f を体 K の上の多項式という。
(3) ベクトル空間の係数 多項式は xnxn-1,…,x,1を基底とする(n+1)次元ベクトルとも考えられる。それで一般に,ベクトル空間でスカラーのことを係数という。

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報

<<:  Counting circuit - keisuukairo (English spelling) counting circuit

>>:  Light water reactor - Keisuiro

Recommend

Finespotted flounder (English spelling)

A fish of the family Pleuronectidae (illustration)...

Kiyohara Natsuno

A government official in the early Heian period. ...

chair

…The English word chair is a seat with a backrest...

Tsukuba

〘Self Wa 5 (Ha 4)〙 (meaning "crawl on one'...

feudum

… [Definition and Usage] The word "feudal&qu...

Lysiosquilla

…While the adult population has a very limited ra...

Sack suit

… The origins of the suit are said to date back t...

Crepidiastrum keiskeanum (English spelling) Crepidiastrumkeiskeanum

… [Morita Tatsuyoshi]. … *Some of the terminology...

Ward-Hovland phenomenon

…According to this theory, meaningful memory mate...

Morin, Jean

[Born] 1591. Blois Died: February 28, 1659. Paris....

Elementalism

...This is the position that the whole is not mer...

space opera

…H. Gernsback, known as the father of American sc...

Sakurai [city] - Sakurai

A city in northern Nara Prefecture. It was incorpo...

Hydroides ezoensis (English spelling) Hydroides ezoensis

… [Minoru Imajima]. … *Some of the terminology th...

Livy (English spelling) Titus Livius

A historian of ancient Rome. He was born in Patav...