Imaginary number - Kyosuu

Japanese: 虚数 - きょすう
Imaginary number - Kyosuu

It is not possible to find the square root of a negative number within the real range. For example, the quadratic equation x 2 = -1 cannot be solved within the real range. Therefore, we consider a number that becomes -1 when squared, and represent it with the symbol i. That is,

If we introduce a new number such that: , we can solve all quadratic equations. This i is called the imaginary unit, and a and b are any real numbers, and a number expressed in the form a + bi is called a complex number. Here, a complex number where b ≠ 0 is called an imaginary number, and in particular, a complex number bi where a = 0, b ≠ 0 is called a pure imaginary number. A real number refers to the complex number a + bi where b = 0, and therefore real numbers are included in complex numbers.

[Terada Fumiyuki]

[Reference] | Complex numbers

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

実数の範囲では負の数の平方根は求められない。たとえば、二次方程式x2=-1は、実数の範囲では解くことができない。そこで、2乗すれば-1になる数を考えて、それをiという記号で表す。すなわち、

となる新しい数を導入すれば、すべての二次方程式を解くことができる。このiを虚数単位とよび、a、bを任意の実数としてa+biの形に表される数を複素数という。ここで、b≠0である複素数を虚数imaginary number(想像上の数)といい、とくにa=0, b≠0である複素数biを純虚数という。実数real numberは、複素数a+biのb=0の場合をさしていい、したがって、実数は複素数のなかに含まれる。

[寺田文行]

[参照項目] | 複素数

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Kiyosu Conference

>>:  Kiyosu [town] - Kiyosu

Recommend

Guntur (English spelling)

A city in central-eastern Andhra Pradesh, southeas...

Taifang County

A Chinese district in ancient Korea. Lelang Distr...

sipah

...They were intellectual elites who had mastered...

Jacques Cujas

1522‐90 One of the leading figures in French human...

Trade fair - Mihonichi (English spelling)

A market that is set up for a limited period of ti...

patronato real (English)

…For the next three centuries, the missions in th...

Common dolphin (common dolphin)

A mammal of the family Delphinidae in the suborder...

Aceh Province (English spelling)

A special region at the northern tip of Sumatra, I...

African mole rat

…Also known as the African mole rat. A general te...

Carpini, Giovanni de Piano

Born: Around 1180. Perugia, Umbria Died August 1, ...

Altun [Mountains] - Altun

In Chinese characters, it is called Alkin Mountain...

Masatoshi Ibi

…Hita, a tenryo established by inheriting Toyotom...

Black-tailed prairie dog

...The name "dog" comes from the sharp ...

Limicola falcinellus; broad-billed sandpiper

Charadriiformes, Scolopacidae. Total length 15-18c...

Weekly News

...After Gutenberg's invention of movable typ...