Extreme value

Japanese: 極値 - きょくち(英語表記)optimum value
Extreme value

When a function is given, if we take a point P and take a point V in its vicinity, and if the function is maximum (minimum) at P in V, then the function is said to be maximum (minimum) at P, and the function value at that time is called the maximum (minimum). Maximum and minimum values ​​are collectively called extreme values.

Since ancient times, an important problem in mathematics has been to find the points where a function has a maximum or minimum within the entire domain of the function. However, since the properties of maximum and minimum are global, it is generally very difficult to find a solution. On the other hand, the properties of maximum and minimum are local, so points that give extreme values ​​can be found using differentiation, as shown below. A practical approach is to find the points that give the maximum and minimum from among the points that give these extreme values.

[Osamu Takenouchi]

Extrema of a function of one variable

If a function f(x) is differentiable at x = x 0 and has an extremum at x = x 0 , then f'(x 0 ) = 0. If f'(x) is positive to the left of x 0 and negative to the right, then x 0 gives a maximum of f(x), and if it is negative to the left and positive to the right, then x 0 gives a minimum. Also, if f(x) is differentiable n times at x = x 0 , then
f′(x 0 )=0, f″(x 0 )=0,……,
f (n-1) (x 0 )=0, f (n) (x 0 )≠0
When n is even, x 0 is a point that gives an extreme value of f(x), and when n is odd, x 0 does not give an extreme value of f(x).

[Osamu Takenouchi]

Extrema of a function of several variables

To simplify the description, we will discuss the case of a function of two variables. If f(x, y) is partially differentiable with respect to P(x 0 , y 0 ) and f takes an extreme value at P, then f x (x 0 , y 0 )=0, f y (x 0 , y 0 )=0 (f x and f y are the partial differential coefficients of f). Also, suppose f is twice continuously differentiable in the vicinity of P (f xx , f xy , and f yy exist and are continuous), and f x (x 0 , y 0 )=0, f y (x 0 , y 0 )=0.

Δ = f xy ( x 0 , y 0 ) 2
-f xx (x 0 , y 0 )f yy (x 0 , y 0 )
Depending on the sign of the value, if Δ < 0, f is determined to be an extreme value at P, and if Δ > 0, it is determined to be a non-extreme value. However, when Δ = 0, it is not possible to determine either from this alone.

When x and y change under the condition ∅(x, y)=0, the points with these values ​​form a curve. To find the maximum and minimum of the function f(x, y) on this curve, consider a constant λ and create the equation f(x, y)-λ∅(x, y), and set the partial derivative of this with respect to x and y to zero, that is,
f x (x, y)-λ∅ x (x, y)=0,
f y (x, y)-λ∅ y (x, y)=0
We can then examine the points (x, y) that satisfy the following formula as candidates for maximum and minimum. This method is called the Lagrange method of undetermined multipliers.

[Osamu Takenouchi]

How to find extreme values ​​of functions of multiple variables
©Shogakukan ">

How to find extreme values ​​of functions of multiple variables


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

関数が与えられたとき、1点Pの適当な近傍Vをとると、Vのなかではその関数がPにおいて最大(最小)となっているとき、関数はPにおいて極大(極小)となるといい、そのときの関数値を極大値(極小値)という。極大値、極小値を総称して極値という。

 関数が最大あるいは最小になる点が存在するならば、それを関数の全定義域から求めよ、というのは、古来数学における重要な問題であった。しかし、最大・最小という性質が大域的なものであるため、一般的に解を得ることはたいへん困難である。一方、極大・極小という性質は局所的なものであって、極値を与える点は、以下に示すように微分法を用いて探すことができる。これら極値を与える点から最大・最小を与えるものを求める、というのが実用的なやり方である。

[竹之内脩]

一変数関数の極値

関数f(x)がx=x0で微分可能でx=x0で極値をとるならば、f′(x0)=0である。もしf′(x)がx0の左側では正、右側では負であれば、x0はf(x)の極大を与え、左側で負、右側で正ならば極小を与える。またf(x)がx=x0でn回微分可能で、
 f′(x0)=0, f″(x0)=0,……,
 f(n-1)(x0)=0, f(n)(x0)≠0
のときは、nが偶数ならばx0はf(x)の極値を与える点であり、nが奇数のときはx0はf(x)の極値を与えない。

[竹之内脩]

多変数関数の極値

記述を簡単にするため二変数関数の場合を述べる。f(x, y)がP(x0, y0)で偏微分可能で、fがPで極値をとるならば、fx(x0, y0)=0, fy(x0, y0)=0である(fx、fyはfの偏微分係数)。また、fがPの近傍において2回連続微分可能(fxx、fxy、fyyが存在して連続)で、fx(x0, y0)=0, fy(x0, y0)=0であるとする。

 Δ=fxy(x0, y0)2
 -fxx(x0, y0)fyy(x0, y0)
なる値の符号によって、Δ<0ならばfはPで極値をとり、Δ>0ならば極値をとらないと判定される。ただしΔ=0であるときは、これだけからはいずれとも判定できない。

 ∅(x, y)=0という条件のもとでx、yが変化するとき、これらの値をもつ点は一つの曲線を描く。この曲線上での関数f(x, y)の極大・極小を求めるには、一つの定数λを考えて、f(x, y)-λ∅(x, y)という式をつくり、これをx、yに関して偏微分したものをゼロと置いて、すなわち、
 fx(x, y)-λ∅x(x, y)=0,
 fy(x, y)-λ∅y(x, y)=0
を満たす点(x, y)を極大・極小を与える候補として調べればよい。この方法をラグランジュの未定乗数法という。

[竹之内脩]

多変数関数の極値の求め方
©Shogakukan">

多変数関数の極値の求め方


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Polar Urals

>>:  Polar Regions

Recommend

Kwantung Army Epidemic Prevention and Water Supply Department

...The name of a secret biological (bacteria) war...

Simultaneous quadratic equations

The simultaneous algebraic equations f 1 ( x 1 , ....

filled band

… Because electrons are fermions, each energy lev...

Carp streamer - Koinobori

An exterior decoration erected on the Boys' F...

gefühlsbetonter Komplex (English spelling) gefühlsbetonter Komplex

…However, it was Jung who most emphasized the wor...

Aksakov, IS - Aksakov

...Russian thinker. Son of ST Aksakov. His elder ...

"My Foolish Son - A Study of Flaubert" - My Foolish Son

...The reason he was seen as a representative int...

Aitken Nuclear Counter - Aitken Nuclear Counter

...An instrument that measures the amount of fine...

Winning picture

〘Noun〙① A painting theme. A picture depicting peop...

Temporary Interest Rate Adjustment Act

Law No. 181 of 1947. The purpose of this law is to...

Omi [town] - Oumi

An old town on the northeast shore of Lake Biwa in...

Battlefield

〘 noun 〙 The place where a battle is held. Battlef...

Anesthesia - Masui (English spelling) anesthesia

Generally, it means the temporary elimination of ...

Minoru Asada

…At the same time, computer chess, which had long...

Konohanori (English name) Laingia pacifica Yamada

A species of the Rhodophyceae family (illustration...