Boundary value problem

Japanese: 境界値問題 - きょうかいちもんだい
Boundary value problem

A boundary value problem is a problem of finding a solution to a differential equation that satisfies a differential equation in a certain region and satisfies the conditions given on the boundary of this region. In this case, the conditions given on the boundary are called boundary conditions. Second-order ordinary differential equation (p(x)y')'+(q(x)+λ)y=0
Consider the interval [a, b] and set the boundary condition αy(a)+βY′(a)=0
γy(b)+δy′(b)=0
The boundary value problem imposed by the above is called the Sturm-Liouville problem. Here, p(x) is positive, and α 22 and γ 22 are nonzero. λ is a parameter. This appears, for example, in the problem of finding a function that describes the stationary vibration of a string. Therefore, the problem of finding a nonzero solution to the boundary value problem for the parameter λ is important. This is called an eigenvalue problem. When there is a nonzero solution for λ, λ is called an eigenvalue, and the nonzero solution is called an eigenfunction. In this case, there are countably infinite eigenvalues, and if they are λ n , they can be arranged as λ 0 < λ 1 < ... < λ n < ..., so that λ n →∞ (n →∞). The eigenfunction for each λ n is uniquely determined except by multiplying it by a constant. If one of them is ψ n (x), the sequence of functions {ψ n (x)} forms a complete orthogonal sequence in the interval [a, b]. If 0 is not an eigenvalue, then there exists a suitable function G(x,ξ) such that for a given f(x), (p(x)y')'+q(x)y+f(x)=0
The solution that satisfies the above boundary conditions is

This G(x,ξ) is called the Green's function. In this case, the Sturm-Liouville problem is given by the integral equation

This problem is equivalent to finding a solution to the equation, and integral equation theory is applied.

Boundary value problems can also be considered for partial differential equations. For example, when D is a bounded domain in three-dimensional space and its boundary S is sufficiently smooth, the equation

The problem is to find a solution u that satisfies and is zero on S. The concepts of eigenvalues ​​and eigenfunctions are defined in the same way as in ordinary differential equations, and in this case too, there are countably infinite eigenvalues, which are λ 1 < λ 2 < … < λ n < …,
λ n →∞ (n→∞)
There are only a finite number of linearly independent eigenfunctions for each λ n . If these are ψ n , 1 (x), …, ψ n , m(n) (x), then the sequence of functions is { n,j (x); j = 1, 2, …, m(n), n = 1, 2, …}
is a complete sequence of orthogonal functions on D.

[Yoshikazu Kobayashi]

[Reference item] | Eigenvalue

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

微分方程式に関し、ある領域で微分方程式を満たし、この領域の境界で与えられた条件を満たす解を求める問題を境界値問題という。このとき境界上で与えられた条件を境界条件という。二階常微分方程式
  (p(x)y′)′+(q(x)+λ)y=0
を区間[a,b]上で考え、境界条件
  αy(a)+βY′(a)=0
  γy(b)+δy′(b)=0
を課した境界値問題をスチュルム‐リウビルの問題という。ただしp(x)は正値で、α2+β2とγ2+δ2は0でないとする。またλはパラメーターである。これは、たとえば弦の定常振動を記述する関数を求める問題として現れる。そのためパラメーターλに対し、境界値問題の0でない解を求める問題が重要である。これを固有値問題という。λに対し0でない解があるときλを固有値、その0でない解を固有関数という。いまの場合、固有値は可算無限個あり、それらをλnとするとλ0<λ1<……<λn<……と並べることができて、λn→∞(n→∞)となる。各λnに対する固有関数は定数倍することを除いて一意的に定まる。その一つをψn(x)とすると、関数列{ψn(x)}は区間[a, b]において完備直交列をなす。0が固有値でないとすると適当な関数G(x,ξ)が存在して、与えられたf(x)に対し
  (p(x)y′)′+q(x)y+f(x)=0
の解で、前記の境界条件を満たすものは

で与えられる。このG(x,ξ)をグリーン関数という。このときスチュルム‐リウビルの問題は、積分方程式

の解を求める問題と同等になり、積分方程式の理論が適用される。

 偏微分方程式についても境界値問題が考えられる。固有値問題としては、たとえばDを三次元空間の有界領域でその境界Sが十分滑らかであるとき、Dで方程式

を満たし、S上で0となる解uを求める問題がある。固有値、固有関数の概念が常微分方程式の場合と同様に定義され、この場合も固有値は可算無限個で、それらは
  λ1<λ2<……<λn<……,
  λn→∞ (n→∞)
となる。各λnに対し一次独立な固有関数は有限個しかない。これらをψn, 1(x),……,ψn, m(n)(x)とすると、関数列
  {n,j(x) ; j=1, 2,……, m(n), n=1, 2,……}
はD上の完備直交関数列になる。

[小林良和]

[参照項目] | 固有値

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Co-rotation - Kyokaiten

>>:  Church Sonata (English: sonata da chièsa)

Recommend

Gore, Charles

Born: 22 January 1853, Wimbledon Died January 17, ...

Euryops daisy (English spelling)

A semi-cold-hardy evergreen perennial plant of the...

Ore storage

The storage of ore in preparation for the smelting...

Itoshiro Cedar - Itoshiro Cedar

...The northern part of the town is included in H...

Hatsuko Kikuhara

The head of the Nogawa school of jiuta and a prac...

African white wagtail - African white wagtail

...On the other hand, a subspecies of this specie...

Hutchinsoniella macracantha (English spelling) Hutchinsoniella macracantha

…However, in 1953, during a study of benthic orga...

Fire flooding; in-situ combustion

This is a method of igniting an oil reservoir whil...

Whiteman, P.

...A work for piano and orchestra by Gershwin. Ge...

Sienkiewicz

Polish author. Famous for his patriotic historical...

Tomoe Kinomoto - Tomoe Kinomoto

...This is a Sanshiri Utai piece composed by Fuji...

Camei - Camei

In 1950, the company launched the powerful deterg...

Kawane [town] - Kawane

A former town in Haibara County in the middle reac...

External effects

...The phenomenon known as pollution is a typical...

Silk Road - Silk Road

An elegant name for an ancient East-West transport...