Perfect number

Japanese: 完全数 - かんぜんすう
Perfect number

When the sum of the divisors of a natural number n, S(n), is 2n, n is said to be a perfect number. For example, 6 and 28 are perfect numbers. This is because 2 x 6 = 1 + 2 + 3 + 6
2・28=1+2+4+7+14+28
That is why. When S(n) is greater than 2n, it is called an abundant number, and when S(n) is less than n, it is called a deficient number.

Proposition 36 of Book 9 of Euclid's Stoicheia describes perfect numbers as follows: "If, beginning with a unit, any number is determined which is in the ratio of 1 to 2, so that the sum of all these is a prime number, and if the whole is multiplied by the last number to produce a number, then the product will be a perfect number." In other words,
1+2+2 2 +...+2 n-1 =2 n -1
If N is a prime number, then N=2 n-1 (2 n -1) is a perfect number. Conversely, if an even number N is a perfect number, then N=2 n-1 (2 n -1)
In the form, 2 n −1 is a prime number, which was proven by Euler.

No odd perfect numbers have been found, and it is still not known whether there are an infinite number of even perfect numbers, i.e. whether there are an infinite number of prime numbers of the form 2 n -1.

[Tsuneo Adachi]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

自然数nの約数の和S(n)が2nとなるとき、nは完全数であるといわれる。たとえば、6や28は完全数である。なぜなら
  2・6=1+2+3+6
  2・28=1+2+4+7+14+28
だからである。S(n)が2nより大きいときは過剰数、S(n)がnより小さいときは不足数とよばれる。

 ユークリッドの『ストイケイア』第9巻の命題36に次のように完全数の記述がある。「もし単位から始まり順次に1対2の比をなす任意個の数が定められ、それらの総和が素数になるようにされ、そして全体が最後の数に掛けられてある数をつくるならば、その積は完全数であろう」。つまり、
  1+2+22+……+2n-1=2n-1
が素数ならばN=2n-1(2n-1)は完全数である。逆に、ある偶数Nが完全数ならば
  N=2n-1(2n-1)
の形で、2n-1は素数であるが、これはオイラーによって証明された。

 奇数の完全数はみつかっていない。また、偶数の完全数が無数にあるかどうか、つまり2n-1の形の素数が無数にあるかどうかは現在でも知られていない。

[足立恒雄]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Cancer Center

>>:  Infections Disease

Recommend

Dinodon orientalis (English spelling) Dinodon orientalis

… [Takahiro Matsui]. … *Some of the terms that me...

Order to provide firewood and water - Shinsuikyuyorei

An order from the Edo Shogunate regarding the trea...

Hollywood Ten

The term refers to ten Hollywood filmmakers who we...

Traetta, T. (English spelling)

… In the 1730s, music began to be directly import...

ward

…After the First World War, it lost its position ...

International conflicts

Under international law, an international dispute...

Kawatana [Hot Spring] - Kawatana

A hot spring in Toyoura-cho, Toyoura-gun, Yamaguch...

Franz [II] - Franz

The last Holy Roman Emperor (reigned 1792-1806). S...

Cipriano de Rore (English spelling)

...Secular songs such as chansons and madrigals, ...

Humus

Humus is a dark, amorphous organic matter inheren...

Takano Minoru

Labor activist. Born in Tokyo. While attending Wa...

Tibouchina

…In horticulture, Melastoma species are classifie...

Fish finder - echo sounder

This is a machine that emits ultrasonic waves int...

Umi no Inukai - Amano Inukai

...One of the Shinabe clans in the pre-Taika peri...

Carbonic acid (English spelling)

An acid produced when carbon dioxide dissolves in...