A set S is said to be open if all points in S are interior points. It can also be defined as the complement of a closed set. Open sets are often used to define the topology of a space. Examples of open sets include the interior of a circle in the Euclidean plane and open intervals on a line. Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information |
集合 S が開集合であるとは,S に属するすべての点が内点であることをいう。これは閉集合の補集合としても定義できる。ある空間の位相を定めるために,開集合を指定する方法がよく用いられる。開集合の例としては,ユークリッド平面上の円の内部,直線上の開区間などがある。
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報 |
<<: Revised Sarica Code - Kaishu Saricahoten
...Usually, x chromosomes make up one genome, so ...
(1) An architectural term derived from the Turkish...
A medieval samurai family originating from Yamanak...
An ancient castle fort from the Nara to Heian peri...
A prime factor is a number that is a product of tw...
One of the titles of the priests who serve at Ise...
…The walls are made of thick stone, and arches ar...
Resistors are also called resistors. They are devi...
An island in the West Indies southeast of Cuba. Al...
Founded in 1896 as Nippon Seito Sugar Co., Ltd., t...
…Atomic nuclei with the same mass number (usually...
Year of death: 27 March 1671 (6 May 1671) Year of ...
…Other fleas that penetrate the tissues of their ...
…Critics such as Louis Vauxcelles denounced this ...
…Even after the war in Japan, these “mixed race c...