A set S is said to be open if all points in S are interior points. It can also be defined as the complement of a closed set. Open sets are often used to define the topology of a space. Examples of open sets include the interior of a circle in the Euclidean plane and open intervals on a line. Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information |
集合 S が開集合であるとは,S に属するすべての点が内点であることをいう。これは閉集合の補集合としても定義できる。ある空間の位相を定めるために,開集合を指定する方法がよく用いられる。開集合の例としては,ユークリッド平面上の円の内部,直線上の開区間などがある。
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報 |
<<: Revised Sarica Code - Kaishu Saricahoten
Year of death: 1908.11.8 (1908.11.8) Born: Septemb...
A general term for military expeditions that West...
This disease is caused by infection of livestock w...
Black fugitive slaves in the New World colonies. I...
During the reign of Emperor Sujin, it is said tha...
Thanks to recent advances in accelerator technolog...
A historical book of ancient Sri Lanka. It is tran...
…Kinship Patrilineal Matrilineal [Muratake Seiich...
…French patté [pat] (foot). (g) high back vowel [...
A pharmacy is a place where a pharmacist dispense...
Refers to the various studies related to human cu...
...In the Jewish church, musical instruments were...
...Partition walls that can be moved even after c...
...A general term for plants that are apyrus and ...
Commentary. Thirty-five volumes. Twenty-three book...